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ABSTRACT

This dissertation examines the relationship between productivity growth and research activities

of heterogeneous firms, and the contribution of firm heterogeneity to business cycle fluctuations.

The first chapter uses a dynamic model to study firms’ decisions on whether to conduct research

in house, with external units or via both modes. Productivity is modeled to evolve endogenously

according to Research and Development (R&D) modes, and the costs of starting and continuing

research are random and mode specific. Model estimates from a panel of Chinese manufactur-

ing firms show that in-house R&D is more effective and costs less to maintain, but smaller firms

choose external R&D because of its lower startup cost. These estimates are consistent with the ob-

served cross-sectional differences in firm size by research status, and can match the persistence and

transition dynamics in R&D modes. Simulation exercises show that continuation cost reduction

induces more changes in R&D decisions, but start up cost reduction leads to most of the aggregate

productivity gain.

The second chapter investigates the impact of innovation on firm level prices. This impact

depends on how innovation affects quality and efficiency and how the firm passes these changes

onto prices. Estimation results of the empirical model with a panel of Spanish firms show that firms

take advantage of process innovations to enlarge markups by not completely passing onto prices

the decrease in cost. Product innovations could increase or decrease cost but they do not affect

markups, thus we do not find prices to change systematically with them.

The third chapter examines the contribution of firm level shocks to output fluctuations for

four OECD countries (US, Germany, Canada and the UK). Recent studies stemming from Gabaix
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(2011) show that when few firms account for a disproportionately large share of production, shocks

to these firms can propagate to generate business cycle fluctuations. However, we find that while

firm size distribution is highly skewed in these four economies, the ability of the largest firms to

transmit shocks is not universal and thus should not be taken for granted.
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Chapter 1

The Dynamics of R&D Organization and Productivity

Growth

1.1 Introduction

The organization of research and development (R&D) activities differs across firms and varies over

time. Some firms choose to perform R&D in house, some contract with other firms or research

institutions, and some use a combination of the two modes. While the existing studies have ex-

amined extensively the performance consequences of R&D organization, few consider what drives

the variations in organization decisions for research and why a firm’s chosen mode is not invari-

ant over time.1 Since R&D investments have uncertain returns but when successful they increase

productivity, a better understanding of how firms organize research is important for assessing the

implications of R&D for growth and welfare.

In this paper, I use a dynamic structural model to show that selections into R&D modes are

driven by variation in startup and continuation costs and are further reinforced by mode-specific

returns. Which type of cost is relevant depends on a firm’s previous period research status; the

respective costs are also random and the associated uncertainty dictates the transitions in and out

of R&D modes. I then estimate this model with a panel of Chinese manufacturing firms to quantify

the costs and benefits of the different research modes. With the model estimates, I analyze how

productivity and cost uncertainty affect firm dynamics in R&D organization, and in turn, what the

implications are for firm-level and aggregate productivity growth when cost uncertainty is reduced.

1There are a few notable exceptions. Aghion and Tirole (1994) use an incomplete contract framework to model the

static management of R&D. Aw et al. (2011) and Peters et al. (2013) also use a dynamic structural model to investigate

the costs of overall R&D activity, without considering how it is organized.



www.manaraa.com

2

The task of quantifying research costs calls for a dynamic structural model because they are

often unobserved, vary and paid across time periods. Firms not active in R&D face the cost of

setting up research labs and recruiting talent in the case of internal R&D or the transaction costs

associated with identifying the appropriate research unit to partner with in the case of external

R&D. After these irreversible startup costs are paid, firms incur a per-period cost to remain active

in research. These maintenance costs not only entail explicit expenditures such as payments to

R&D personnel and capital, but also unobserved heterogeneous components that manifest in the

efficiency of the contracting environment, the availability of credit, R&D services and talent.

To account for the complex nature of research costs, I follow the approach in Aw et al. (2011)

and Peters et al. (2013) to model them as random draws observed to the firm, but not to the econo-

metrician. However, instead of treating R&D as a single activity, I let research (startup and con-

tinuation) costs and benefits differ by modes in order to examine organization dynamics and the

associated implications for productivity growth.

The model mechanism is straightforward. Each period, firms consider the status-dependent

cost draws associated with the different R&D modes in hand, and choose the R&D mode that gives

the highest expected payoffs by solving a simultaneous choice problem. This expectation is formed

over future uncertainty in research cost and the returns on R&D organization; current internal and

external R&D decisions are endogenous and they have different growth effects because productivity

(a combination of unobserved technical efficiency and product quality) is an endogenous Markov

process of R&D organization. The parameters in the returns and the cost distributions are then

estimated from the data such that they can rationalize the observed R&D decisions and dynamics.

The data used for estimating the model are a three year panel of Chinese firms from the 2003

Enterprise Survey conducted jointly by the World Bank and the Chinese National Bureau of Statis-

tics. Some empirical regularities arise from this panel of Chinese firms. Firms that do not perform

R&D have the smallest sales, and among R&D performers firms that conduct research both in

house and with external units are the largest, followed by internal only, and lastly by external R&D

only performers. The transition matrix in R&D structure shows firms are persistent in R&D modes,

but more so in internal than in external. Finally, firms not active in research are more likely to start
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with external R&D and firms with in-house R&D switch in and out of external activities.

The model estimates are consistent with the aforementioned empirical observations and provide

insights into the trade-offs faced by firms. In house R&D is more effective, cheaper to maintain, but

costs more to start than external R&D. This delivers selection into R&D structure that reinforces the

cross-sectional differences in firms by research status observed in the data. The combination of the

large startup but smaller continuation cost estimated for in house R&D rationalizes the observation

where firms with internal knowledge capacity rarely quit research. The lower estimate for external

startup cost and higher external continuation cost relative to that of internal R&D are in line with

the more frequently observed entries and exits in external R&D activities. It is also consistent with

the hypothesis that it requires less commitment to outsource research. Since contractual R&D does

not commit firms to engineers and capital, internal R&D performers additionally switch in and out

of external R&D. The reason could be the firm requires additional skills for one-off projects or it

wants to take advantage of off-the-shelf technology from external sources.

The estimated model provides a laboratory for examining what happens to firm dynamics in

R&D organization and productivity growth if research costs were reduced. I find that reduction

in startup cost would induce entry but also quitting because of a reduction in the option value of

investing. Reduction in continuation costs would increase persistence in research and induce entry.

In either type of cost reduction, adjustments along external R&D dimension account for almost

70% of the productivity gain and they also affect a larger share of firms. This is in line with the

findings in Agrawal et al. (2014), where they find that under a tax incentive program for firms in

Canada, after-tax cost elasticity is higher for contractual R&D than R&D wage bills for in-house

personnel.

Although continuation cost reduction induces more changes in R&D organization via entry

and increases persistence, startup cost reduction leads to a higher aggregate productivity gain. For

this sample of Chinese firms, there are still a sizable proportion of firms inactive in research and

the startup cost is much more substantial than continuation cost. As a result, the quitting channel

does not operate pervasively to erode productivity gain. While continuation cost reduction induces

entry, it also encourages firms less productive in research to continue. These results from this
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simulation exercise suggest that growth implications of R&D cost reduction are context specific.

They are determined by the degree of cost uncertainty associated with different research modes and

the initial distribution of firms’ research status and productivity. Failing to take these factors into

account jointly could mislead R&D policies.

Lastly, to assess the importance of R&D organization, I compare the model with one where

R&D is a single activity. When R&D organization is not considered, the startup cost is twice

the external startup cost and only slightly lower than that of in-house R&D. This precludes some

medium size firms from investing in research and some large firms from contracting with external

units for temporary research needs. As a result, cost reductions lead to productivity growth that is

almost 13% less when firms cannot choose how to organize R&D.

The rest of this paper is structured as follows. Section 1.2 discusses this paper’s contribution

to the relevant literature. Section 3.2 describes the data and provides descriptive statistics that

motivate the dynamic model, which is then laid out in Section 1.4. The estimation strategy of the

model is outlined in Section 1.5. The estimation results are summarized in Section 1.6. Using the

estimates, I conduct R&D cost reduction simulation exercises in Section 1.7. Finally, Section 1.8

concludes.

1.2 Literature Review

This paper is most closely related to studies that examine the costs of R&D: one strand of which

finds evidence of R&D sunk and fixed cost while the other estimates them as this paper does.

By examining the lagged structure of R&D and export decisions, Aw et al. (2007) find that R&D

activities are much less persistent than export for Taiwanese firms and differences in sunk cost is

likely the explanation. Following a tax incentive scheme in Canada, Agrawal et al. (2014) find

firms’ differential responses in R&D wage bills versus contractual expenditures as evidence for the

existence of R&D fixed costs. Aw et al. (2011) and Peters et al. (2013) estimate the actual level

of R&D costs for Taiwanese and German firms. The former paper estimates a dynamic structural

model of the firm’s decision to export and conduct R&D, and the latter of the firm’s decision to
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conduct R&D taking into account innovation outcomes. Both Aw et al. (2011) and Peters et al.

(2013) find R&D costs to be significant, and that sunk cost is significantly more than fixed cost.

This paper takes after these two studies in modeling the trade-offs faced by a firm when making

R&D decisions, but allows research to be conducted in house and/or outsourced in order to study

organization dynamics.2

This paper contributes to the literature that empirically investigates the effectiveness of internal

versus external R&D and whether they are substitutes or complements. These studies often find

internal R&D to be more effective than external R&D.3 However, there is no consensus on whether

R&D modes are complements or substitutes, e.g. whether internal R&D increases a firm’s “ab-

sorptive capacity” to learn from external units.4 Lokshin et al. (2008) find complementarity to exist

only when firms have invested enough in internal R&D. Using a panel of Swedish firms, Bergman

(2011) also finds internal and contractual R&D are complements only for firms with high R&D

intensities. The conclusion in Audretsch et al. (1996) is similar in that they find complementarity

(substitutability) between the two modes for high (low) tech industries. Cassiman and Veugelers

(2006) find the degree of complementarity depends on how reliant firms are on universities and

research centers. Breaking up external R&D to contractual versus collaborative, Schmiedeberg

(2008) finds complementarity between in house and cooperative R&D but not contractual R&D.5

The complementarity of R&D modes remains context-specific, and even within a given context

the effect is heterogeneous. The way R&D costs are modeled in the paper could potentially recon-

cile these conflicting findings. While I do not find significant interaction of internal and external

R&D in the context of China (lack of complementarity), the realized random cost draws could put

a firm in either situation. And the reason for which could be due to either correlations in the cost

2Another closely related study is Amoroso (2014); she also estimates the sunk and fixed costs of research, but the

aim is to understand how these costs are different when firms also cooperate with external units. She finds sunk cost of

R&D to be higher than that of innovation, and these costs are lower when firms collaborate with external units.
3Bonte (2003) is an exception where he finds external R&D to have a higher productivity effect than internal R&D

using a panel of West German firms.
4Cohen and Levinthal (1989) is one of the first studies to use the term “absorptive capacity” to describe that tacit

knowledge is more easily acquired if the firm also engages actively in research pertaining to relevant fields.
5For examples of studies that define technology sourcing as external R&D, see Hou and Mohnen (2013) and Hou

(2013). Since the objective of this paper is to examine the firm’s deliberate effort to conduct research, I do not consider

additionally the role of licensing.
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shocks or economies of scope.

This paper is also related to the literature that examine the determinants of R&D structure, one

of which concerns the differences in innovation needs. Beneito (2006) finds in a panel of Span-

ish firms that internal R&D is most productive for significant innovation while contracted R&D

is oriented more towards innovation of incremental nature. On the other hand, industry leaders

conclude that focused innovations often take place internally and serendipitous ones externally.6 In

an incomplete contract framework, Aghion and Tirole (1994) predicts that research is more likely

to be conducted in house if effort or capital inputs from the firm are more important for innovation

success than those from the research unit. This paper takes an agnostic approach when mapping

innovation needs and R&D modes; the motive for research is to enhance profit position, and firms

use different R&D modes to achieve process and product innovation since productivity is modeled

as a combination of technical efficiency and product quality.7

Another determinant of R&D modes is a firm’s internal financing capability, and the theoretical

model in Aghion and Tirole (1994) predicts that firms with “deep pockets” (or larger firms) are

more likely to integrate research in house.8 This paper also documents the observed selection of

larger firms into doing research in house. However, it does not model the role of credit constraints;

firms are capable of paying the lump sum set up and continuation costs as long as the marginal

benefit exceeds the cost.

1.3 Empirical Evidence

This section first describes the data and then presents descriptive statistics that motivate the dy-

namic model. There exists a pecking order in firm heterogeneity with respect to research modes;

none-R&D performers are the smallest and least productive, followed by firms that only conduct

research with external units, then firms with in-house research teams, and lastly firms that do both

6Views of industry leaders are summarized from the 2008 Centennial Global Business Summit that took place in the

Harvard Business School.
7See Cohen (2010) for a more comprehensive overview for determinants of overall R&D expenditure level.
8There is also a related strand of studies that investigates the role of credit constraint on the overall level of R&D

investments, rather than on R&D modes. See Stiglitz and Weiss (1981) for the theoretical backdrop, Himmelberg and

Petersen (1994) and Hottenrott and Peters (2012) for empirical evidence in the US and Germany.
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are the largest. Firms are highly persistent in their research modes, but entry and exits in external

R&D is much more frequently observed.

1.3.1 Data and Variable Description

The empirical analyses in this paper are based on the 2003 Enterprise Survey conducted jointly by

the World Bank and the Chinese National Bureau of Statistics. The sample consists of manufac-

turing establishments representative of 9 sectors, located across 14 provinces and 1 municipality in

China.9 27% of all establishments reported to be a member of a group company, but “each made its

own financial decisions and had its own financial statements separate from those of the firm. It also

had its own management and control over its payroll.”10 The rest of this paper uses establishments

and firms interchangeably, and treats them as independent decision-makers.

Firms were surveyed in 2003 for extensive information on production, business and investment

climate over the fiscal year ending in 2002, and 2 years of retrospective data were recorded for a

subset of questions. In the end a three year panel for 1266 firms spanning the period 2000-2002

was constructed for the following variables: sales, capital, material inputs, and R&D activities. A

firm is defined as an internal R&D performer if it had its own research team in house with R&D

personnel, and an external R&D performer if it had contractual relationships with other firms,

universities or research institutions.11

Apart from production and R&D variables that are used to estimate the model, I also take

variables of innovation outcome, firms’ research and organization environment from the cross-

sectional part of the extensive questionnaire to examine how these variables correlate with R&D

modes. This part of the empirical exercise is meant to complement the model by shedding light on

9The 9 sectors are food processing, biotech products, garment & leather, household electronics, metallurgical pro-

duction, electronic equipment, transportation parts, chemical products and electronic parts. Their geographic locations

were chosen to reflect where the bulk of manufacturing activities took place. China has 22 provinces, 5 autonomous

regions, 4 municipalities and 2 special administrative regions.
10Requirement taken from the questionnaire manual. 34% of the establishments that were members of a group com-

pany reported to benefit from R&D programs of other member companies, which makes up about 9% of the total number

of firms in the sample.
11Whether the nature of contractual relationship was “cooperative” is not known. In a separate section of the survey,

firms additionally reported R&D expenditures on labor, capital and technology sourcing. However, there is no clear

mapping on how to split these categories further into expenditures on in house versus external activities.
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which R&D mode is associated with more innovation success and thus higher returns, and what

the unobserved research costs in the model could represent.

1.3.2 Firm Level Characteristics by R&D Modes

Table 1.1 reports average firm level characteristics by the four mutually exclusive R&D modes

(NoRD, ExtRD only, IntRD only and Both) to examine how firms differ across categories. Panel A

reports basic measures of firm heterogeneities, Panel B summarizes innovation performance, and

Panel C presents organization and research environment variables.

The observation counts in the last row show that 45.4% of the 1266 firms do not perform R&D,

8.6% conduct R&D with external units only, 26.6% in house only and the rest of the firms do

both (19.3%). The distribution of firm heterogeneity as measured by average sales, number of

employees, capital, capital intensity and productivity show firms that conduct R&D both in house

and with external units are the largest, followed by internal R&D only and then external R&D only

performers. The hierarchical order is robust to industry and location controls, the results for which

are summarized in Table 1.10 of Appendix 1.9.5.

The pecking order suggests selection into R&D modes by firm heterogeneity and/or a mirrored

pattern of returns to R&D modes. However, performance difference across R&D modes is not

trivial to assess, since R&D organization decisions are endogenous to firm specific capabilities,

economic and organization environment. Firms that find internal R&D to be most effective are

more likely to conduct research in house, and firms that find arm’s length R&D to suit their needs

will choose accordingly. A simple comparison of the resulting innovation outcomes may mislead

one about the effectiveness across R&D modes.

Panel B of Table 1.1 reports innovation outcomes that firms reported as dummy variables, with

the exception of number of patents obtained. This limits one from comparing qualitative differences

in research output across firms by R&D modes. Nonetheless, Panel B shows that the pecking order

by R&D mode is also observed (albeit much less stark) in number of patents obtained and whether a

firm introduced new product, new business line and new process. However, the difference between

external only and internal only R&D mode is not statistically different from each other. Though
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it is very clear that firms that do both types of R&D unambiguously produce the most research

output. Lastly, firms defined as none performers in this paper also have some research output.12

While the existing literature has extensively studied the determinants of overall R&D expendi-

ture and innovation success, few explore the impact of organization and research environments on

the chosen R&D modes. Panel C attempts to shed light on these variables by reporting summary

statistics on whether a firm had a manager with a post graduate degree, whether it had a line of

credit at the bank, the percentage of firms that are stateowned, whether the firm was located in a

special economic zone and the whether R&D services were available. While these variables are

statistically significant in explaining R&D organization, there is not a clear pattern on which of

them are associated with a specific R&D mode.

Table 1.1: Average Firm Level Characteristics by R&D Modes

NoRD ExtRD IntRD Both

A. Firm Size and Productivity

Sales (mil. RMB) 57.3 60.6 170.6 308.3

Number of employees 296 380 531 990

Capital (mil. RMB) 25.4 37.2 49.9 167.1

Capital labor ratio (mil. RMB/employee) 21.7 29.8 41.9 58.8

Levinsohn-Petrin productivity 2.06 2.17 2.34 2.40

B. Innovation Performance

Introduced new product (%) 28.1 60.2 61.9 86.2

Introduced new business line (%) 13.5 30.2 31.4 46.6

Introduced new process (%) 27.1 55.9 51.3 75

Number of patents obtained 0.063 0.401 0.462 1.121

C. Organization and Research Environment

GM had post-graduate degree 4.8 12.2 16.3 25.5

Had line of credit at bank 20.8 33.2 36.4 44.7

Stateowned 16 24.2 19.5 22.5

Located in special zone 19.7 28.8 35.2 45.4

Availability of R&D services 39.6 67.3 63.8 79.7

N (%) 575 (45.4) 109 (8.6) 337 (26.6) 245 (19.3)

All figures are averages computed from 2000-2002. 1USD≈8RMB in 2002.

12Peters et al. (2013) also find that R&D expenditure is not necessary for introducing new products or processes.
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1.3.3 Transitions in R&D Modes

In addition to differences in firm performance by R&D modes, it is also observed in the data that

firms did not always conduct research via a fix mode. Table 1.2 shows the transition matrix in

R&D structure and provides some insights on how differences in costs across R&D mode could

rationalize the observed pattern.

The diagonal of the matrix reports the percentage of firms remaining in the same status from

t−1 to t, and it suggests R&D organization structure is highly persistent (the probability of staying

put ranges between 0.882 and 0.928). The first row shows that in this particular sample, non R&D

performers are more likely to start with external than in-house R&D in the next period (0.046

versus 0.021), and firms rarely transition to doing both types of R&D. The last two rows show that

once an internal research team is put in place, the firm almost never quits research and additionally

switches in and out of external R&D (11.4% of the internal R&D only performers take on external

R&D additionally the next period, while 8.2% of the firms that perform both drop off their external

R&D activities).

The persistence in R&D structure is indicative of hysteresis behavior that can be induced by

sunk set up costs and relatively lower continuation cost required to maintain research. The higher

frequencies of transitioning in and out of external compared with internal R&D suggest the former

may be associated with a lower start up but higher continuation cost. This observation is consistent

with the three potential roles external R&D plays. Firms with no prior R&D experience may start

with external R&D first before committing to research via in-house R&D, or to take advantage of

off-the-shelf technology for short-term performance. Internal R&D performers may additionally

take on external R&D for one-off projects in order to avoid building up excess capacity, or to

complement in-house capacity in the case of cooperative research.13

13It is beyond the scope of this paper to tease out the exact reasons behind internal R&D performers branching out to

external R&D.
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Table 1.2: Transition Matrix in R&D Modes

noRDt extRDt intRDt botht

noRDt−1 0.928 0.046 0.021 0.005

extRDt−1 0.071 0.888 0.005 0.036

intRDt−1 0.004 0 0.882 0.114

botht−1 0.002 0 0.082 0.915

All figures are averages computed from 2000-2002.

1.4 Model

The model developed in this section provides a framework for how heterogeneous firms in produc-

tivity and size make R&D investment decisions. A firm’s problem each period is divided into two

components: its static pricing and production decisions determine short-run profit, and its dynamic

choices of R&D modes enter to affect future productivity and profitability. Rather than deciding

on doing R&D or not, this model differs from its predecessors in that firms additionally consider

whether to conduct research in house, with external units or via a combination thereof. Facing cost

uncertainties associated with the different R&D modes, firms then choose the research organization

that gives the highest expected future payoffs.

1.4.1 Firms’ Static Production Decisions

Firms compete in a monopolistic competitive market. There are not strategic interactions among

producers, and they each take demand for its variety j at time t, Q jt, as given:

Q jt = ΦtP
−η
jt exp(ζ jt), Φt ≡ QtP

η−1
t . (1.1)

This demand is a function of the market demand index (Φt) consisting of the CES aggregate of

differentiated varieties and the price index (Pt), firm-level demand shifters (ζ jt), the elasticity of

substitution across varieties that is assumed to be constant and greater than 1 (η), and the price set

by the firm (P jt).

The profit-maximizing price that satisfies demand follows from the firm’s FOC, and it is a
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constant markup over its short-run marginal cost:

P jt =
η

η − 1
MC jt. (1.2)

Firm j with Hicks-neutral technology (ψ jt) produces with capital (K jt) and variable inputs of la-

bor and materials, and the production function is assumed to be constant-returns-to-scale in these

variable factors. In turn, short-run marginal cost (MC jt) depends on (ψ jt, K jt) and common input

prices (Xt), whose exact expression depends on the functional form assumption on the production

function:14

MC jt = MC(K jt, Xt) exp(−ψ jt). (1.3)

Combining the equilibrium price and quantity yields the following per-period revenue and

profit (in logs):15

r jt = lnΦt − (η − 1) ln
η

η − 1
− (η − 1)mc(k jt, Xt) + (η − 1)

(
ψ jt +

1

η − 1
ζ jt

)
︸��������������︷︷��������������︸

ω jt

, (1.4)

π jt = − ln η + r jt, (1.5)

where ω jt is the firm-specific productivity that is a combination of technology (ψ jt) and demand

shifter (ζ jt) that can reflect product quality as in Peters et al. (2013). The technology component

captures heterogeneities in revenue across firms relative to inputs, or a firm’s ability to produce at

a different unit cost from others. The quality component represents demand (dis)advantages that

could be explained by product differentiation. Both components of ω jt are known to the firm but

unobserved to the econometrician.

In the productivity literature, ω jt is often modeled as an exogenous Markov process, with

lagged productivity ω jt−1 to capture the persistence in a firm’s performance. In the innovation

14See Appendix 1.9.1 for its derivations.
15Equation 1.5 is derived by subtracting total variable cost (TVC = MC jtQjt) from revenue, and simplified using (1.2)

to arrive at: Π jt = (1 − η−1

η
)QjtP jt ≡ 1

η
Rjt.
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literature, there is a long tradition of modeling R&D investments as an additional input to the

production function (starting with Griliches, 1979). The object of empirical interest is then the

marginal returns of “knowledge capital stock” constructed from R&D expenditures. Doraszelski

and Jaumandreu (2013) endogenize the productivity process to depend on R&D efforts in a flexible

manner, later adapted in Aw et al. (2011), Peters et al. (2013), Bøler et al. (2015) and now also in

this paper.

Specifically, productivity evolves according to R&D organization decisions in a first-order

Markov process:

ω jt = g(ω jt−1, i jt−1, e jt−1) + ξ jt

= α0 + α1ω jt−1 + αee jt−1 + αii jt−1 + αiei jt−1 ∗ e jt−1 + ξ jt. (1.6)

ω jt shifts according to firm’s R&D organization decisions in the previous period for whether it con-

ducted research in house (i jt−1) and/or externally (e jt−1). ξ jt is the idiosyncratic shock that captures

uncertainty that is inherent in R&D investments, in addition to any surprises unknown to he firm at

the time of production. Thus the transition mapping of productivity growth is probabilistic rather

than deterministic. Finally, R&D decisions have permanent effects on performance via ω jt−1. How

much of the benefits persist over time depends on the coefficient on lagged productivity, relative

contribution of the different R&D modes and the amount of uncertainty represented by ξ jt.

As also apparent in (1.6), both efficiency and profitability can be shaped by R&D activities.

This paper takes an agnostic view on whether firms use internal or external R&D for improving

marginal cost or product attractiveness, for incremental or drastic innovations. The reasons are

twofolds. Firstly, information on innovation outcome is only available as categorical variable over

the three years in the panel. Secondly, even with continuous variables recorded at the right fre-

quency, it is an econometric challenge to causally identify whether internal or external R&D is

more productive for which kind of innovation for reasons outlined in Section 1.3.2.

In the end, the key static parameters of interest for estimation are those governing the returns

from research modes in the productivity process. These parameters are common knowledge and
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the same across firms. However, the resulting impact of research each period is size (K jt) and shock

(ξ jt) dependent; since productivity is Hicks neutral, a given percentage increase in ω jt translates

into a higher level of profit for larger firms. While R&D decisions are endogenous, I do not model

the choice on capital in this paper and take them as given.

1.4.2 Firms’ Dynamic Problem

With the law of motion governing productivity in eq (1.6), firms can form expectations of their

future profits for a given R&D mode, and the actual research choice depends also on R&D costs

that must be incurred to realize the expected productivity gain. Firms wishing to start R&D or

restart after inactivity pay a lump-sum set up cost to form a research lab with equipment and

recruited technical personnel, or the transaction cost to locate and then form a partnership with

an external unit. Once a research lab is established or a research partner is identified, the costs to

maintain research in the form of capital and wage expenditures continue to be different each period.

These costs can also have unobserved components that represent variations in the efficiency of the

contract and organization environment, availability of credit or external R&D services.

The heterogeneities in the aforementioned R&D costs are difficult to measure and often unob-

served, and may also vary over time. I follow Aw et al. (2011) and Peters et al. (2013) to account

for them in the model as independent draws from a joint CDF CF , where F = (Fi, Fe, f i, f e) is

the set of the four random cost variables and (Fi
jt, Fe

jt, f i
jt, f e

jt) are the realized internal and external

R&D startup (upper case F) and fixed costs (lower case f).16

Each period, firms compare the expected present discounted value of profits from the possible

R&D choices with the realization of the cost draws to choose a research mode that gives the highest

pay off. The corresponding Bellman equation with the vector of observed state variables s jt =(
k jt, ω jt, i jt−1, e jt−1

)
and the vector of unobserved state variables F jt is as follows:

16Internal and external cost draws are independent of firm characteristics and of each other. One can alternatively

model the costs as fix parameters and each R&D mode is associated with a stochastic shock and model these shocks to

be correlated. This specification and preliminary results are outlined in Appendix 1.9.4.
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V(s jt,F jt) = Π(s jt) +max
i jt ,e jt
{ − i jtCi

jt − e jtCe
jt (1.7)

+ δ
∑
ω jt+1

∫
F jt+1

V(s jt+1,F jt+1)dCF (F )dP(ω jt+1|ω jt, i jt, e jt)},

where δ is the discount factor, dCF is the aforementioned distribution of costs, and dP(ω jt+1|ω jt, i jt, e jt)

is the Markov transition probability distribution that summarizes firms’ beliefs about future states

governed by eq (1.6).17 Lastly, Ci
jt, Ce

jt represent the costs associated with internal and external

R&D choices that depend on lagged decisions (i jt−1, e jt−1).

Firm j pays a continuation cost if it was active in research the previous period, and a set-up

cost if it was not for each of the two R&D choices:

Ci
jt = (1 − i jt−1)Fi

jt + i jt−1 f i
jt,

Ce
jt = (1 − e jt−1)Fe

jt + e jt−1 f e
jt.

The cost expressions indicate that stopping and starting R&D is costly because a firm will have to

pay the start up cost again that is irreversible. The requirement of a startup cost induces hysteresis

behavior; in face of a bad continuation draw (higher cost for the same percentage improvement

in productivity), a firm may not quit research right away because future costs may be lower and

by maintaining research through bad times it avoids paying the startup cost again. In addition

to choosing whether to start or stop research, firms also need to consider the trade-offs among

the R&D modes by comparing how the startup and fixed costs differ across them, in conjunction

with how they contribute differentially to productivity gain via the transition matrix of productivity

dP(ω jt+1|·).
With the choices of internal and external mode, a firm in the end faces a menu of four research

statuses to choose from: none (n), external R&D only (e), internal R&D only (i), and both internal

and external (ie). The actual realized cost draws that rationalize the firms’ decisions are observed

17It is implied from the expression for dP(·) that the transition probability of is independent of the state variable k jt.
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by the firm but not the econometrician, thus the dynamic parameters of interest for estimations are

those that characterize the distribution of costs.

Integrating the Bellman equation over these unobserved shocks, and re-writing it with the short-

hands for choice-specific continuation values gives the following expression:

V̄(s jt) =

∫
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Π(s jt) +max

i jt ,e jt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δEV̄n,

−Ce
jt + δEV̄e,

−Ci
jt + δEV̄i,

−Ci
jt −Ce

jt + δEV̄ie

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dCF (F ), (1.8)

where V̄(s jt) =
∫

V(s jt,F jt)dCF (F ) is the integrated value function, and EVn, EVe, EVi, EVie

are the choice-specific value functions corresponding to the four possible R&D statuses:

EV̄n ≡
∑
ω jt+1

V̄(s jt+1)dP(ω jt+1|ω jt, i jt = 0, e jt = 0), (1.9)

EV̄e ≡
∑
ω jt+1

V̄(s jt+1)dP(ω jt+1|ω jt, i jt = 0, e jt = 1), (1.10)

EV̄i ≡
∑
ω jt+1

V̄(s jt+1)dP(ω jt+1|ω jt, i jt = 1, e jt = 0), (1.11)

EV̄ie ≡
∑
ω jt+1

V̄(s jt+1)dP(ω jt+1|ω jt, i jt = 1, e jt = 1), (1.12)

A firm’s organization decision for each of the four choices from the maximization problem must

then satisfy the following inequality:

n jtδEV̄n + e jt(δEV̄e −Ce) + i jt(δEV̄i −Ci) + ie jt(δEV̄ie −Ci −Ce) (1.13)

>{(1 − n jt)δEV̄n &

(1 − e jt)(δEV̄e −Ce) &

(1 − i jt)(δEV̄i −Ci) &

(1 − ie jt)(δEV̄ie −Ci −Ce)}.
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Panel 2 depicts the case of complementarity with the opposite inequality sign in (1.14), or that

the marginal benefit of doing one type of R&D is greater when the firm also does the other. This

has the interpretation that in-house R&D may increase a firm’s absorptive capacity to obtain tacit

knowlege from external units, a concept first discussed in Cohen and Levinthal (1989). Last but

not least, Panel 3 depicts the case when neither substitution nor complementarity is at play, and so

the marginal benefit of doing both types of R&D is simply the sum of each activity.

In which scenario a firm ends up depends on the static returns parameters in the productivity

process (1.6), the relative costs associated with each R&D mode, and the productivity and size of

firm. The estimation of the model allows one to assess the importance of research costs, and how

well this model uses them to explain firms’ research decisions.

1.5 Estimation Strategy

The estimation procedure consists of two stages. The first stage is the estimation of the parameters

in a firm’s profit function: Φt, η, marginal cost function parameters in mc(k jt, Xt), as well as the

returns to R&D modes in the Markov process g(ω jt−1, e jt−1, i jt−1, ie jt−1). These static parameters

form the basis of a firm’s expectation of its productivity evolution and discounted profit streams,

which are then embedded in the dynamic estimation of the firm’s problem to obtain the R&D cost

distribution parameters using Bayesian Markov Chain Monte Carlo (MCMC).

1.5.1 Identification Strategy and Estimation Procedure of the Static Parameters

To estimate the parameters in the revenue and profit function, it remains to specify the marginal

cost function.19 For a given production function, the corresponding short-run marginal cost (1.3)

can be estimated as a function of factor prices (xt) and capital:

mc jt = β0 + βxxt − βkk jt − ψ jt. (1.15)

19In this section, all lower case letters denote the variables in logs.
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Substituting this expression into revenue and rearranging the terms give the following equation for

revenue:

r jt = const. + βtt + (η − 1)(βkk jt + ω jt) + ν jt, (1.16)

where the constant term absorbs (η, β0), and βtt captures the economy-wide market index and

factor prices.20

However, the revenue equation (1.16) is not directly estimable because productivity is unob-

served. In earlier papers of the productivity estimation literature, such as Olley and Pakes (1996),

Levinsohn and Petrin (2003a) and Ackerberg et al. (2006), productivity is assumed to be an ex-

ogenous AR(1) process, whereas Doraszelski and Jaumandreu (2013) endogenize the process and

allow it to evolve according to a firm’s R&D expenditures. Aw et al. (2011) adapt the endogenous

specification and estimate productivity from the revenue equation in the first stage. With the esti-

mated productivity series, they obtain the coefficients for the Markov process in the second stage.21

This paper follows the same estimation strategy and is outlined as follows.

I assume a firm’s choices on material depend on their state variables k jt and ω jt:

m jt = m(k jt, ω jt). (1.17)

As long as the demand function for material is monotonically increasing in productivity and capital,

one can invert (1.17) and use a function of capital and materials observed in the data to proxy for

productivity: ω jt = m−1(k jt,m jt). I assume this inverted function m−1(·) to be a polynomial of

degree two in its arguments.22 Substituting out ω with the polynomial gives an estimable revenue

equation with observables:

rit = const. + βtt + (η − 1)(βkk jt + m−1(k jt, ω jt)) + νit. (1.18)

20The exact expressions are: const. = −(η − 1)β0 − (η − 1) ln
η

η−1
and βtt = lnΦt + βx xt.

21Ackerberg et al. (2006) also use a two-step estimation procedure but with an exogenous AR(1) process.
22It’s been argued that this approach of estimating productivity is subject to misspecification. In Appendix 1.9.5.2, I

lay out an alternative estimation strategy and its corresponding results.
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However, one will not be able to separately identify η, βk and the coefficient for capital in the

polynomial. Instead, an estimate for the function h(·) can be obtained:

r jt = const. + βtt + β1k jt + β2k2
jt + β3m jt + β4m2

jt + β5k jtm jt︸�����������������������������������������������︷︷�����������������������������������������������︸
h(k jt ,m jt)

+ν jt. (1.19)

We know from (1.18) that ĥ jt ≡ (̂η−1)(βkk jt+ω jt), or ω jt =
ĥ jt

η̂−1
−βkk jt. Substituting the expression

into the productivity process (1.6) gives:

ĥ jt = (η − 1)αo + (̂η − 1)βkk jt + (̂η − 1)α1(ĥ jt−1 − (̂η − 1)βkk jt−1) (1.20)

+ (̂η − 1)αee jt−1 + (̂η − 1)αii jt−1 + (̂η − 1)αieie jt−1 + (̂η − 1)ξ jt,

which can be estimated using NLS with η̂ that is estimated from the profit function:

π jt = ln η + r jt + e jt. (1.21)

The identification of the parameters in the productivity process relies on two main assumptions.

The first is that shocks at time t ξ jt are orthogonal to the decisions made in the previous period.

The second assumption is that the estimate for h(·) is unbiased. More specifically, if there exists

unobservables that are correlated jointly with revenue and R&D organization structure in the first

stage (1.19), then the parameters in (1.19) are biased because unobserved productivity is a function

of R&D modes. If the estimate for h(·) is biased then subsequently so are the estimates in (1.20).

The rich questionnaire of this dataset allows me to incorporate firm-specific variables that may

be correlated with R&D decisions and at the same time affect revenue. Incorporating the corre-

sponding dimensions of firm heterogeneities increases the precision of the estimates, but at the

expense of a substantially longer estimation time of the dynamic component of the model due to an

increase in the number of state variables. In Appendix 1.9.5.3 Table 1.12, I show estimation results

for including these controls chosen by economic reasoning based on the innovation literature. The

qualitative features of the model are still preserved, and in the rest of this paper I focus on results
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from the baseline case that contains no additional controls.

1.5.2 Estimation Procedure of the Dynamic Parameters

Knowing the parameters for the revenue function and the productivity process, a firm can compute

its profit accordingly, form expectations of its productivity evolution, and arrive at the continuation

values of different R&D modes to compare them with the actual cost draw. These cost draws

are observable only to the firms, and the dynamic parameters of interest are the parameters of the

cost distributions. How variations in the data identify these parameters can be explained as follows.

R&D set up costs are identified from the probability of entry across firms with similar profit streams

but differ in their previous period status, whereas continuation costs are identified from the relative

frequencies (probability) of exit in R&D modes.23 In what follows, I outline the estimation strategy

in detail.

I assume the independent cost variables (Fi, f i, Fe, f e) follow the following exponential dis-

tribution (x > 0, y > 0):

Fi ∼ G(x) = 1 − exp
(
−x/γF

)
, f i ∼ G(x) = 1 − exp

(
−x/γ f

)
,

Fe ∼ L(y) = 1 − exp
(
−y/λF

)
, f e ∼ L(y) = 1 − exp

(
−y/λ f

)

where Θ = (γF , γ f , λF , λ f ) is the set of distribution means for internal and external sunk and fixed

costs. To estimate Θ with the dynamic model, I construct the likelihood function for the observed

patterns of firms’ R&D decisions:

L(Θ) =
J
Π
j

T
Π
t
P(i jt, e jt|s jt,Θ). (1.22)

P(i, e|s,Θ) = Pie
iePi(1−e)

i P(1−i)e
e P(1−i)(1−e)

n is the probability of the firm’s observed R&D decision

conditioning on its productivity, capital level, and R&D modes in the previous period.
T
Π
t
P(i, e|s,Θ)

is then each firm’s contribution to the likelihood. For a particular vector of Θ, these conditional

23One may argue from the transition matrix shown in Table 1.2 that there is almost no exit in internal R&D in the

data, but the upper bounds for internal sunk and fixed costs are still identified despite this observation.
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choice probabilities are evaluated over the regions specified in Figure 1.1 with cutoffs that are

determined by the value functions.24 But since the value functions are themselves functions of the

cost parameters, an iterative estimation procedure is invoked. One would start with guessed values

for the vector Θ, compute the value functions from iterating the Bellman equation (1.8), maximize

L with respect to Θ and iterate this process until convergence (Rust, 1987). In this paper, I use

instead Bayesian Markov Chain Monte Carlo (MCMC) as Aw et al. (2011) do in their paper.

The intuitions behind Bayesian MCMC is as follows. Rather than assuming Θ as fixed to

obtain their point estimates for which the observed data are most probable to occur, Bayesian

inference treats these parameters as random variables and characterize the estimates and associated

uncertainties with their posterior distributions instead. The posterior is computed by multiplying

the likelihood and the prior distribution of the parameters. However, since the distribution of the

likelihood function is unknown, one can use MCMC to sample parameter values from the posterior

and then use these values to approximate the posterior means. In the end, Bayesian MCMC in

this context is especially valuable as it allows one to get around the problem of maximizing a non-

smooth or non-linear likelihood with respect to the parameters, as will be the case in this paper

due to the joint-decision problem. The detailed steps for the value function computation and the

construction of the likelihood function are spelled out in Appendix 1.9.2, whereas a more detailed

discussion of the Bayesian MCMC methodology can be found in Appendix 1.9.3.

1.6 Estimation Results

1.6.1 Static Parameters

In addition to the full model, I also estimate a version of it that does not distinguish R&D modes

for comparison. Recall the static parameters of interest are those in the revenue function and the

Markov productivity process (eq. 1.19 & 1.20). Stage 1 results and the estimate for the elasticity

of substitution from the relationship between revenue and profit are presented in Table 1.3. These

results are the same for both models. The variables in the polynomial of capital and materials are

24The expressions for each of the probabilities are outlined in Appendix 1.9.2.
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significant in explaining log revenue. The year dummies capture variations in aggregate demand

and common input prices. Their coefficients are insignificant, meaning that the index levels are

not that different from those in the base year 2000. The coefficient on profit is the elasticity of

substitution among varieties; it is significant and implies a markup of 26%.

With the first stage results, one can construct an expression that contains productivity, substi-

tuting into the endogenous Markov productivity process to estimate the parameters using nonlinear

least square. The results for the full model and the model with a single R&D choice are presented

in Column (1) and (2) of Table 1.4. In the full model, in-house and external R&D are expected to

increase ω by 2.6% and 2.1% respectively. The benefits of doing both types of R&D is significant

and the highest of all at 3.9%. The interaction of these two modes is negative but not statistically

different from zero. In the model where research organization is not taken into consideration, the

return to conducting research either via in house staff or with external units is 3%.

1.6.2 Dynamic Parameters

The dynamic estimates that correspond to these two models are summarized in Table 1.5. Column 1

presents the means of the exponential distributions, whereas Column 2 presents the average realized

cost draws paid by firms from 100 simulations. The average research cost as a share of revenue

and profit ratios are recorded in Columns (3) and (4), also computed from 100 simulations. These

averages are weighted by a firm’s size measured as revenue and profit relative to the economy

output.

The top panel of Table 1.5 presents the results for the full model are shown. The unconditional

(conditional) costs show that internal R&D costs almost 2.5 (1.5) times more than external to start,

but external R&D costs almost 2.5 (1.5) times more to maintain. These estimates elucidate the

trade-offs between the two research options, and are consistent with the observed transition in R&D

modes. Despite the higher returns of in-house research, smaller firms select into external R&D due

to its lower start up cost. Once a firm overcomes the set-up cost to establish an in-house research

team, it almost never quits. However, these internal R&D performers may additionally switch in
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Table 1.3: Static Estimates I

Estimation results for stage 1 and elasticity of substitution.

Regression of log revenue on year dummies and a polynomial

in log materials and log capital in Column (1) and on profit

in Column (2).

(1) (2)

log profit 4.871***

(0.143)

log materials 0.479***

(0.097)

log materials sq. 0.034***

(0.005)

log capital 0.223***

(0.075)

log capital sq. 0.025***

(0.005)

log materials * log capital -0.052***

(0.009)

year 2001 -0.012

(0.038)

year 2002 0.008

(0.035)

constant 3.610***

(0.516)

N 3798 3797

R2 0.841 0.234

Robust standard error corrected for heteroskedasticity

in parentheses, p < .1∗, p < .05∗∗, p < .01∗∗∗.
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Table 1.4: Static Estimates II

Estimation results for the Markov process of productivity.

Column (2) consists of results for the model with

single R&D category.

(1) (2)

log capital 0.070*** 0.070***

(0.015) (0.015)

α0 0.120*** 0.117**

(0.018) (0.017)

α1 0.945*** 0.946***

(0.011) (0.011)

αe 0.021**

(0.10)

αi 0.026***

(0.007)

αie -0.008

(0.516)

αrd 0.030***

(0.006)

N 2531 2405

Bootstrapped standard errors in parentheses,

p < .1∗, p < .05∗∗, p < .01∗∗∗. αi not

statistically different from αe.
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Table 1.5: Dynamic Parameter Estimates

(1) (2) (3) (4)

parameters distribution mean realized mean
∑ R∑

R
C
R
∑ Π∑

Π
C
Π

(mil.RMB) (mil. RMB)

Full Model with R&D Organization

Internal γF 688 44.67 0.36 1.56

(47.78) (8.46)

γ f 3.14 3.13 0.018 0.078

(0.13) (0.13)

External λF 274 33.38 0.13 0.58

(11.68) (4.16)

λ f 8.89 7.54 0.030 0.133

(0.31) (0.45)

Model without R&D Organization

Startup Cost 516.58 62 0.56 2.478

(125.35) (10.82)

Continuation Cost 4.5 4.4 0.027 0.119

(0.301) (0.18)

In 2002, 1USD≈8RMB. SE in brackets.

and out of external R&D, to avoid having to build up in-house capacity for one-off projects.25

For either mode, startup cost is many times more than continuation cost (roughly 15 times over

in the case of conditional internal cost and 7 times in the case of external), which rationalizes the

persistence in R&D activities observed in the data. Forward looking firms will want to stick it

out in face of bad continuation draws in order to avoid having to pay for the start up cost again.

Lastly, this startup/fix ratio is also much higher for internal R&D. Coupled with the finding that

external R&D costs more to maintain, the higher startup/fix ratio for internal R&D implies that

in-house R&D is a continuing process of investment in knowledge capacity while external R&D is

relatively short-lived.26

25One can think of these one-off projects as projects that require external expertise or projects that require additional

staff that the firm is not able to accomodate.
26These ratios are much higher than those found in the referenced papers, and it could be attributed to the fact that I

define R&D very differently here. Firms must have active R&D personnel in-house and have declared to have contractual

relationship with external partners. In both Aw et al. (2011) and Peters et al. (2013), where R&D is not split into

categories, a firm is active in research as long as it has positive R&D expenditures. In Amoroso (2014), a firm is active

if it has R&D and if it has product or process innovations introduced.
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The summary of these costs as ratios of a firm’s revenue and profit in Columns (3) & (4) present

a similar pattern. The commitment to establish an internal R&D program is substantial, amounting

to almost 1.5 times per-period profit flow. This gives way to the possibility that credit-constraint is

one of the reasons that firms do not choose internal R&D in reality. Lastly, the continuation costs

as a share of revenue come out to be very close to R&D intensity measured in the data.

The bottom panel of Table 1.5 presents the results for the model without considerations for

R&D organization. The findings are qualitatively similar to those in the existing literature. Startup

cost is substantially higher than continuation cost. The actual magnitude varies from study to study,

however. How R&D actvities are defined, what their returns are, and the transitions in and out of

research all play important roles in determining their levels. The conditional costs from the average

of the 100 simulations are comparable to those in the full model; the startup cost is lower than the

sum of internal and external startup cost, and the continuation cost is slightly lower than the average

of the internal and external continuation costs.

To examine in-sample performance of the estimated parameters for the full model, I compare

how well the model predicts firms’ actions and how well the predicted series of productivity evo-

lution match those in the data. More specifically, I use the dynamic parameters estimates and

simulate 100 data sets of 3 periods taking the initial period R&D status as given, then compute

the transition matrix to report the averages over the 100 simulations in Table 1.6. The overall fit is

reasonable compared with those in Table 1.2. However, the model over-predicts the propensity to

undertake either mode of research for none-R&D performers. External R&D performers also quit

or additionally take on internal R&D much more often than what is observed in the data, and firms

that use both R&D modes quit external more frequently than in reality.27

In addition to examining the transition matrix, I compare the percentage of correct predictions

for each R&D modes. Averaging across the 100 simulations, the model predicts internal and ex-

ternal R&D modes correctly 91.4% and 79.4% of the time. These percentages are lower when I

break up the modes further; they are 78%, 55.5%, 75.5% & 65.3% for none, external only, internal

only and both. Lastly, I compare the kernel density of data versus simulated productivity level

27These discrepancies hint at the possibility that the external fixed cost may still too high and the sunk cost too low.
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from period 3 in Figure 1.2. The Kolmogorov-Smirnov test does not reject the null that these two

samples are from the same distribution, serving as additional evidence that the model fit is good.

Table 1.6: Transition Matrix from Simulated Data using Model Estimates

noRDt extRDt intRDt botht

Model with R&D Organization

noRDt−1 0.871 0.068 0.055 0.006

extRDt−1 0.174 0.740 0.009 0.077

intRDt−1 0.015 0 0.875 0.110

botht−1 0 0 0.119 0.871

N (%) 40% 9.7% 29.6% 20.7%

Model without R&D Organization

noRDt−1 0.903 0.097

extRDt−1 0.030 0.970

N (%) 42% 58%

Figure 1.2: Kernel Density of Data versus Simualted Productivity Level
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1.7 Simulation Results

In this section, I perform counter-factual exercises to examine how R&D cost reductions impact

organization dynamics, as well as how the resulting dynamics translate into productivity growth.

Specifically, I take the sample of firms’ initial year productivity and R&D organization as given,

then simulate cost shocks and solve for the firms’ decisions forward under a 50% reduction in the

cost parameters.

The key findings from the simulation exercises can be summarized as follows. Both startup

and continuation cost reductions stimulate R&D activities, but startup cost reduction leads to the

most productivity growth. Specifically, adjustments along the external margin account for most

of the changes in research status and almost 70% of the productivity gain. Relative to the model

without R&D organization, allowing firms to organize their research leads to a 13% more increase

in aggregate productivity when there is cost reduction. The reason is under a model with single

R&D choice, fewer firms are able to start research via a cheaper mode and larger firms are not able

to additionally contract with external units. In the rest of this section, I explain these findings with

simulation results in more details.28

Table 1.7 reports the changes in the transition matrix, after a 50% reductions in startup and

continuation R&D costs. More specifically, the changes are presented as the proportion of firms

that start and continue R&D relative to the proportions before reduction (Table 1.6). They are

averages over 100 simulations and each simulation consists of three time periods, the same as that

of the panel. I also report the one period growth in the aggregate productivity weighted by revenue

share after cost reduction in the last row:

Δω̃t ≡ ω̃t − ω̃t−1 =
∑ R jt∑

R jt
ω jt −

∑ R jt−1∑
R jt−1

ω jt−1.

Focusing on the results for reduction in startup cost first, Row 1 of Columns (1)-(4) shows that

5.6% of the none-R&D performers take advantage of the startup cost reduction to start research,

28Like Peters et al. (2013), I also do not make any welfare analysis on whether the costs of the subsidy program

outweighs the benefits. There is no spillover effects of innovation in the model, thus firms internalize all R&D benefits.
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with internal only and external only research modes absorbing comparable fraction of entrants. The

fact that not more firms are selecting into internal R&D to take advantage of the lower continuation

cost implies that internal startup cost is still too high.

For R&D firms (Rows 2-4), there are asymmetric responses in how they switch modes in re-

sponse to startup cost reduction. Some external only R&D performers quit research (the category

nt sees an increase of 1.4%); others take advantage of cost reductions to start in house R&D (3.6%),

but some do so at the expense of dropping external activity (1%). Internal R&D firms rarely quit

in-house research but they adjust by either additionally taking on external R&D or dropping it. The

quitting effect is attributed to the narrowing of the “inaction band,” it refers to the set of random

costs that renders none performers unwilling to enter and performers unwilling to quit.

Nonetheless, the quitting channel under startup cost reduction did not operate pervasively

enough to counteract the gain from the entrants for this sample of firms in the aggregate, espe-

cially in the case of internal R&D. In the end, the one period productivity growth from reducing

both internal and external R&D startup costs is 1.36%, which is a 16% increase compared to be-

fore reduction where Δω̃ jt is 1.17%. Moreover, 70% of the gain comes from adjustment along the

external margin.29 In the model without R&D organization, one period productivity growth is just

3% more than before cost reduction.30 This additionally shows the importance of considering firm

organization in research.

In contrast to startup cost reduction, no firms will quit as a result of continuation cost reduction.

Some firms may additionally find entry attractive because the marginal benefit of research is now

higher than the startup cost. Columns (5)-(8) in Table 1.7 show results consistent with expectation.

Among firms that were not previously active in research, external R&D also attracts the most

entrants, a proportion that is comparable to that under sunk cost reduction (2.6%). Reduction in

internal continuation cost, on the other hand, attracts almost no entrants since the startup cost is

still too high. A sizable percentage of internal R&D only firms additionally take on external R&D.

Firms that do both remain active in both modes of research, and more than 50% of the firms that

29This is computed from examining the gain when only external startup cost is reduced.
30Changes in transition matrix for the model with no R&D organization is reported in Appendix 1.9.6.
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would have dropped external activities now continue.

While the net adjustments in R&D status appear to be more favorable in the case of continuation

cost reduction, aggregate productivity growth is 1.16% and even slightly lower compared to before

cost reduction. To understand why productivity gain is smaller under continuation cost, I examine

more closely the affected firms. Table 1.8 presents productivity growth from firms that changed

status as a result of the cost reduction, their revenue share in the economy and the number of these

firms as the share of the total number of firms. Panel A features firms that have either started or

managed to keep research activities after cost reduction, while B features firms that quit as a result

of startup cost reduction.

Table 1.8 shows that sunk cost reduction induces productivity gain from 5.5% of firms but

they make up 11.6% of total revenue. Firms that quit external R&D because of the option value

effect counteracts more than half of the productivity gain, but since there are only a few of them

the negative effect did not amount to any significance in the end. Continuation cost reduction

induces productivity gain from 6.9% of firms yet they make up only 1.6% of total revenue. This

suggests that while continuation reduction induced some entry, it also allowed firms less productive

in research to continue.

Table 1.7: Changes in Transition Matrix from 50% Reductions in R&D Startup and Continuation

Costs, Averaging over 100 Simulations

Reduction in Sunk Reduction in Continuation

nt et it iet nt et it iet

nt−1 -0.056 0.026 0.023 0.006 -0.036 0.026 0.008 0.003

et−1 0.014 -0.060 0.010 0.036 -0.126 0.123 -0.006 0.009

it−1 0.001 0 -0.050 0.049 -0.016 0 -0.013 0.028

iet−1 0 0 0.018 -0.018 -0.009 0 -0.078 0.087

N (%) -0.040 0.008 0.002 0.031 -0.058 0.037 -0.027 0.049

Δω̃t 0.0136 0.0116
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Table 1.8: Summary of Productivity Gain from Affected Firms

Start Up Cost Reduction Continuation Cost Reduction

Panel A

Internal External Internal External

Productivity Growth (%) 2.73 1.96 3.01 1.97

Revenue Share (%) 2.47 9.12 0.27 1.31

Share of Firms (%) 1.96 3.56 1.39 5.52

Panel B

Internal External Internal External

Productivity Growth (%) -3.05 -1.54 N.A. N.A.

Revenue Share (%) ∼ 0 0.13 N.A. N.A.

Share of Firms (%) ∼ 0 0.62 N.A. N.A.

1.8 Conclusion

This paper estimates a dynamic structural model of firms’ R&D organization decisions with a panel

of Chinese firms to quantify the benefits and costs of R&D organization. The model is driven by

the following empirical observations: firms conduct research in house, with external units or via

a combination of both modes; there exists a pecking order in firms’ selection into research modes

by size; once an R&D mode is chosen, firms additionally transition in and out of research. To

account for these features, productivity is modeled to evolve endogenously according to firms’

internal and external R&D decisions, the costs of starting and continuing research are random and

differ by R&D modes. The existence of fixed costs select the largest firms into research and this

selection is then reinforced by the different returns to R&D, and research cost uncertainty explains

the transitions in and out of R&D modes observed in the data.

Model estimates show that in-house R&D is more effective, costs less to maintain but substan-

tially more to start than external R&D. These estimates elucidate the trade-offs between the two

research modes, and are consistent with the observed transition in R&D modes. Despite the higher

returns of in-house research smaller firms select into external R&D due to its lower startup cost.

Once a firm overcomes the startup cost to establish an in-house research team, it almost never quits.

These findings reveal the intuitions for the trade-offs firms face in organizing their R&D: internal
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R&D requires a high level of initial commitment but low fixed cost as opposed to external R&D;

internal R&D is a continuing process of investment in knowledge capacity while external R&D is

relatively short-lived.

The counter-factual exercises of reducing cost uncertainty shows that productivity growth is

2.5 times higher when firms can choose how to organize R&D, and the ability to adjust along ex-

ternal R&D contributes to almost 70% of the difference. Comparing startup versus continuation

cost reduction, I find that while continuation cost reduction leads to the most changes in research

status, startup cost reduction leads to the most productivity gain. In investigating this finding fur-

ther reveals that growth implications of cost reductions is determined by the degree of uncertainty

associated with different research modes and the initial distribution of firms’ research status and

productivity. Thus failing to take these factors into account jointly could mislead R&D policies.
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1.9 Appendix

1.9.1 Derivation of the Marginal Cost Function

Assuming firms take capital as given and the factor markets are competitive, then the firm’s input

decisions are solutions to the following problem:

min
L jt ,M jt

W jtL jt + PM jt M jt subject to F(K j, L jt,M jt) ≥ Q jt/exp(ψ jt). (1.23)

The first order conditions are

W jt = λFL

PM jt = λFM

F(K j, L jt,M jt) − Q jt/exp(ψ jt) = 0,

and they can be used to solve for the 3 unknowns:

λ = Cλ(Q jt/exp(ψ jt),W jt, PM jt,K j),

M∗jt = M(Q jt/exp(ψ jt),W jt, PM jt,K j),

L∗jt = L(Q jt/exp(ψ jt),W jt, PM jt,K j).

The total cost is

TC jt = r jtK j +C(K j,W jt, PM jt,K j,Q jt/exp(ψ jt)),

and the marginal cost is

MC jt =
∂C
∂Q jt

(K jt,W jt, PM jt,Q jt/exp(ψ jt))exp(−ψ jt). (1.24)

By Shephard’s lemma, optimal input M jt is the partial derivative of the total cost with respect to
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PM jt:

M jt =
∂C
∂PM jt

(K jt,W jt, PM jt,Q jt/exp(ψ jt)), (1.25)

which is then be inverted and used to replace Q jt/exp(ψ jt) in (1.24). Finally, we arrive at the new

marginal cost function:

MC jt = MC(K,M jt,W jt, PM jt)exp(−ψ jt), (1.26)

that gives us the empirical counterpart as in (1.3).

1.9.2 Value Function Iteration and Likelihood Function

The actual cost draws are only observable to the firm, and I work with the integrated value function

instead over the random costs to arrive at the following expression:31

EV = Π + PnδEVn + Pe(δEVe − E
[
Ce|e])

+ Pi(δEVi − E
[
Ci|i
]
) + Pie(δEVie − E

[
Ci +Ce|ie

]
),

where Pn, Pe, Pi, Pie stand for the probabilities of conducting R&D via a specific mode given

the cost distribution, and E [C|·] are the conditional expectations of the cost draws.32 With the

following assumed distributions for the cost parameters (for ci > 0, ce > 0):

Ci ∼ G(ci) = 1 − exp
(
−ci/γ

)
,

Ce ∼ L(ce) = 1 − exp
(−ce/λ

)
.

The means of the distribution for sunk and fixed costs are γF , γ f for internal R&D, and λF , λ f for

external R&D.

31To simplify notations I have suppressed the subindex for firm and time.
32Whether Ci (Ce) takes F ior f i (F eor f e) depends on previous period status. Abusing the notation a little, I use

Ci, Ce as random variables.
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The expressions for probabilities are as follows:

Pn = P(δEVn > δEVe −Ce and

δEVn > δEVi −Ci and

δEVn > δEVie −Ci −Ce),

Pi = P(δEVi −Ci > δEVn and

δEVi −Ci > δEVe −Ce and

δEVi −Ci > δEVie −Ci −Ce),

Pe = P(δEVe −Ce > δEVn and

δEVe −Ce > δEVi −Ci and

δEVe −Ce > δEVie −Ci −Ce),

Pie = P(δEVie −Ci −Ce > δEVn and

δEVie −Ci −Ce > δEVi −Ci and

δEVie −Ci −Ce > δEVe −Ce).

These conditions can be simplified when there is complementarity, substitutability, or neither be-

tween the two activities. When there is substitutability, the probabilities are as follows:

Pn = P(Ci > a, Ce > a′)

= [1 −G(a)][1 − L(a′)],

Pe = P(Ci > b, Ce < b′) + P(b′ < Ce < a′, Ce −Ci < −c)

= [1 −G(b)] ∗ L(b′) +
k
λ

[1 −G(c)][H(a′) − H(b′)],

Pi = P(Ci < a, Ce > a′) + P(b′ < Ce < a′, Ce −Ci > −c)

= G(a) ∗ [1 − L(a′)] + L(a′) − L(b′) − k
λ

[1 −G(c)][H(a′) − H(b′)],

Pie = P(Ci < b,Ce < b′) = G(b)L(b′).
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where33

a = δ(EVi − EVn), a′ = δ(EVe − EVn),

b = δ(EVie − EVe), b′ = δ(EVie − EVi),

c = δ(EVi − EVe), k =
γλ

γ + λ
, H(z) = 1 − exp(−z/k),

and the probabilities for internal and external are derived by dividing integration over the non-

rectangular region into two for tractability.

The corresponding conditional expectations multiplied by the probabilities are then:

PeE[Ce|e] = Pe{E[Ce|Ci > b, Ce < b′] + E[Ce|b′ < Ce < a′, Ce −Ci < −c]}

=

∫ ∞
b

∫ b′

0

cel(ce)g(ci)dcedci +

∫ a′

b′

∫ ∞
ce+c

cel(ce)g(ci)dcedci

= [1 −G(b)][L(b′)(b′ + λ) − b′]

+
k
λ

[1 −G(c)]{[1 − H(b′)](b′ + k) − [1 − H(a′)](a′ + k)},

PiE[Ci|i] = Pi{E[Ci|Ci < a, Ce > a′] + E[Ci|b′ < Ce < a′, Ce −Ci > −c]}

=

∫ ∞
a′

∫ a

0

cig(ci)l(ce)dcidce +

∫ a′

b′

∫ ce+c

0

cig(ci)l(ce)dcidce

= [1 − L(a′)][G(a)(a + γ) − a]

− k
λ

[1 −G(c)]{[1 − H(b′)](b′ + k) − [1 − H(a′)](a′ + k)}

− c + γ
λ

k[1 −G(c)][H(a′) − H(b′)] + γ[L(a′) − L(b′)]

PieE[Ci +Ce|ie] = Pie{E[Ci|Ci < b, Ce < b′] + E[Ce|Ci < b, Ce < b′]}

= L(b′)[G(b)(b + γ) − b] +G(b)[L(b′)(b′ + λ) − b′].

33In case of complementarity, the diagonal cut off is m = δ(EVie − EVn)
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In the case of complementarity, the probabilities and conditional expectations are:

Pn = P(Ci > b, Ce > a′) + P(a′ < Ce < b′, Ce +Ci > m)

= [1 −G(b)][1 − L(a′)] +
k′

λ
[1 −G(m)][H′(b′) − H′(a′)],

Pe = P(Ci > b, Ce < a′)

= [1 −G(b)]L(a′),

Pi = P(Ci < a, Ce > b′)

= G(a)[1 − L(b′)],

Pie = P(Ci < b, Ce < a′) + P(a′ < Ce < b′, Ce +Ci < m)

= G(b)L(a′) + L(b′) − L(a′) − k′

λ
[1 −G(m)][H′(b′) − H′(a′)],

k′ =
γλ

γ − λ, H′(z) = 1 − exp(z/k′)

PeE[Ce|e] = Pe{E[Ce|Ci > b, Ce < a′]}

=

∫ ∞
b

∫ a′

0

cel(ce)g(ci)dcedci = [1 −G(b)][L(a′)(a′ + λ) − a′],

PiE[Ci|i] = Pi{E[Ci|Ci < a, Ce > b′]}

=

∫ ∞
b′

∫ a

0

cig(ci)l(ce)dcidce = [1 − H(b′)][G(a)(a + γ) − a],

PieE[Ci +Ce|ie] = Pie{E[Ci +Ce|Ci < b, Ce < a′] + E[Ci +Ce|a′ < Ce < b′, Ce +Ci < m]}

=

∫ a′

0

∫ b

0

cig(ci)l(ce)dcidce +

∫ b

0

∫ a′

0

cel(ce)g(ci)dcedci

=

∫ a′

b′

∫ m−Ce

0

cig(ci)l(ce)dcidce +

∫ a′

b′

∫ m−Ce

0

ceg(ci)l(ce)dcidce

= G(b)[L(a′)(a′ + λ) − a′] + L(b′)[G(b)(b + γ) − b]

+ (γ + λ)[L(b′) − L(a′)] + a′[1 − L(a′)] − b′[1 − L(b′)]

− (m + γ)

λ
k′[1 −G(m)][H′(b′) − H′(a′)].
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Under exponential shocks but restricting substitutability or complementarity, the integrated

value function is instead:

EV = Π + [1 −G(p)][1 − H(q)]δEVn +G(p)[1 − H(q)]δEVi

+ [1 −G(p)]H(q)δEVe +G(p)H(q)δEVie

+ p[1 −G(p)] + q[1 − H(q)] − γG(p) − λH(q),

where

p = δEVi − δEVn,

q = δEVe − δEVn.

One of the features of the exponential distribution is that its truncation has a nice form that

allows one to simplify the expressions for the value functions. For a given set of cost parameters,

one can numerically solve for V that is made up of Vn, Ve, Vi, Vie, each is 100 (ω) by 10 (k) grids.

With the value functions, one can proceed to construct the joint likelihood function.

1.9.3 Bayesian MCMC Estimation

Rather than assuming θ is fixed and using MLE to obtain their point estimates:

p(θ|y) ∝ p(y|θ),

I use the Bayesian approach; treat θ as a random variable to maximize the posterior distribution

instead:

p(θ|y) =
p(y|θ)p(θ)

p(y)
∝ p(y|θ)p(θ).

With a diffuse prior for θ, I update with the data to form posterior beliefs about the parameters

using the Metropolis-Hastings algorithm.
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The basic idea of the M-H algorithm is to take simulated draws that are slightly dependent and

are approximately from a posterior distribution. The hope is when the chain runs long enough it

converges to the stationary distribution. I implement the algorithm as follows:

1. Diffuse priors: P(θ) ∼ N(0, 1000) or N(0, 100); 30 sets of random starting values θ0.

2. For simulations i = 1 to 10000, draw a candidate θ∗ from J(θi|θi−1) and accept with probabil-

ity r = min
( q(θ∗)L(X|θ∗)

q(θt−1)L(X|θi−1)
, 1
)
. If not accepted, set θi as θi−1.

3. The jumping distribution is a random walk and symmetric: J(θi|θi−1) = θi−1 + randi ∗ step,

where randi ∼ N(0, 1) and step is the parameter-specific step size.

1.9.4 Alternative Model Specifictaion

Instead of assuming independent cost draws, one can estimate the cost variables as fixed parameters

and have the cost shocks as correlated draws from a bivariate normal distribution Φ(εi, εe) with

mean zero, correlation ρ and the covariance matrix:

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

i ρσiσe

ρσiσe σ2
e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The new Bellman equation (counter part to (1.8)) is then

V̄(s jt) =

∫
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Π(s jt) +max

i jt ,e jt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δEV̄n,

−Ce + εe + δEV̄e,

−Ci + εi + δEV̄i,

−Ci −Ce + εe + εi + δEV̄ie

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dΦ(ε), (1.27)

and the integrated value function is:

EV = Π + PnδEVn + Pe(δEVe −Ce + E
[
εe|e])

+ Pi(δEVi −Ci + E
[
εi|i
]
) + Pie(δEVie −Ci −Ce + E

[
εi + εe|ie

]
),
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It is important to note that εi, εe also depend on a firm’s previous period status, so each is a

vector of two variables, one for start up cost shock and the other for maintenance. This implies that

the there are a total of four different variances as well as correlations in total.

Under this specification, I have restricted the the interaction term between internal and exter-

nal R&D in the Markov process (αie) to be zero, and instead let the correlation coefficient in the

cost shocks pick up correlations between the cost draws that could alternatively be interpreted as

economies of scope. The updated figure as a result of the restriction of αie = 0 is now:

where

p = δEV̄n − (δEV̄i −Ci)

q = δEV̄n − (δEV̄e −Ce)

This specification is attractive since one can take advantage of the Cholesky decomposition to

uncorrelate the cost draws. This makes the problem tractable as the probabilities and the conditional

expectations will be much simpler as a result. More specifically, call the transformed variable

ε = Cε, one needs a matrix C such that the transformed ε has mean 0 and variance I2, which means
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the candidate C must be such that CΣC = I2. The Cholesky decomposition of Σ is Σ = U′U:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σi 0

ρσe σe(1 − ρ2)1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σi ρσe

0 σe(1 − ρ2)1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
And the natural candidate for C is U′−1.

To proceed with the estimation, I first pre-multiply the cutoffs p, q with U′−1 so that (εi, εe)

are now independent standard normal bivariate variables. I evaluate the conditional expectations

correspondingly and then rescale the expectation by pre-multiplying it with U′. One can then

proceed to solve for the value function by iteration, and then estimate the parameters using Baysian

MCMC.

In the end, the set of parameters under this alternative model consists of the four costs and the

variance of each of the costs (Panel A of Table 1.9), and the correlation between them (Panel B of

Table 1.9).

Table 1.9: Dynamic Parameter Estimates under Alternative Specification

(1) (2)

parameters mean SE

(mil.RMB)

Internal γF 655.1 (0.792)

γ f 1.67 (0.005)

σ(εγF ) 6.69

σ(εγ f ) 7.94

External λF 71.7 (0.718)

λ f 5.46 (0.094)

σ(ελF ) 20.62

σ(ελ f ) 19.58

Correlation

ελF ελ f

εγF -0.2336 0.0065

εγ f 0.1183 -0.0501

In 2002, 1USD≈8RMB. SE in parentheses.
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The estimates for internal and external startup and continuation costs are close to those un-

der the baseline model, but the shocks associated with external R&D activities have much higher

variance. I next examine the correlations among the cost shocks. There is a negative correlation be-

tween internal and external startup costs, this supports the observation in the data that firms rarely

start both types of research at once. The correlations between internal continuation (startup) and

external startup (continuation) costs are positive, but close to zero for the latter combination. This

may serve as preliminary evidence that firms with an in-house team may have an incentive to start

external R&D and vice versa. Lastly, the correlation between internal and external continuation

costs is negative but close to zero. This is in line with the empirical finding that the two activities

serve as substitutes for firms that are active in research.
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1.9.5 Robustness Checks

1.9.5.1 Pecking Order by R&D Mode

Table 1.10: The Pecking Order by R&D Mode is Robust

lnsales lnK Productivity New Proc New Prod Patents

1(e jt−2 = 1) 0.641*** 0.423** 0.360** 0.562*** 0.626*** 0.445**

(0.184) (0.201) (0.150) (0.144) (0.145) (0.181)

1(i jt−2 = 1) 1.092*** 0.943*** 0.717*** 0.561*** 0.744*** 0.520***

(0.128) (0.131) (0.0968) (0.0931) (0.0943) (0.119)

1(ie jt−2 = 1) 1.608*** 1.517*** 0.977*** 1.207*** 1.457*** 0.987***

(0.166) (0.169) (0.124) (0.116) (0.125) (0.130)

Constant 7.072*** 13.48*** 7.034*** -0.925*** -0.896*** -1.894***

(0.321) (0.298) (0.222) (0.233) (0.227) (0.309)

N 1266 1266 1266 1260 1260 1266

R2(Pseudo R2) 0.382 0.353 0.320 (0.127) (0.194) (0.130)

Coefficients on year, industry, city, exporter and state-owned status omitted. Robust standard error

clustered by firms. Depvars: Productivity is Levihnson & Petrin type of estimator with an exogenous

first order Markov process; New Proc, New Prod, and Patents are indicator variables for whether

firms introduced new process, product or held patents.In all regressions R&D modes are jointly

significant; in the last three columns e jt−2 is not statistically different from i jt−2. This last

finding suggests both R&D structures contribute significantly to innovation success, regardless of

whether it is a new product or a new process.
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1.9.5.2 Alternative Estimation Strategy for the Productivity Process

One can alternatively estimate the productivity process in a one-step procedure. This is possible

with either a nonparametric or parametric control function for ω jt. In what follows, I adopt the

strategy under the assumption that the production function is Cobb-Douglas.

When the production function is Cobb-Douglas, the exact expression for ω jt, or the inverted

h−1(·) is:34

ω jt ≡ h−1(k jt,m jt) ≡ κ′ + δ′t − βkk jt + m jt. (1.28)

Lagging (1.28) one period and substituting it for the Markov process for ω jt−1 as specified in (1.6)

gives:

ω jt = α0 + α1(κ′ + δ′t − βkk jt + m jt) + αii jt−1 + αee jt−1 + αiei jt−1 ∗ e jt−1 + ξ jt (1.29)

The updated revenue is now35

r jt = const. + βtt + (η − 1)βkk jt + (η − 1)α1

[
βkk jt−1 + m jt−1

]
(1.30)

+ (η − 1)αii jt−1 + (η − 1)αee jt−1 + (η − 1)αiei jt−1 ∗ e jt−1 + (η − 1)ξ jt,

and the parameters in the Markov process can be estimated in one-step using NLS.

The results are summarized in 1.11. For comparison purposes, I also include the results from

the two-step estimation procedure in Column (1). The qualitative feature of the estimates are

preserved compared with the case of two-step estimation procedure. Internal R&D is more effective

than external R&D and the interaction of the two modes is not significant. However, the persistence

parameter (α1) is reduced significantly. Notice also that the constant term in the Markov process

cannot be separately estimated from that in the revenue function under the one-step procedure.

34κ′ = η

η−1
ln

η

η−1
− βl ln βl +

βl(η−1)−η
η−1

ln βm, δ
′
t = − 1

η−1
lnΦt + βlwt − (η−1)βl−η

η−1
pm

t .
35κ = −(η − 1) ln

η

η−1
+ (η − 1)βl ln βl + (η − 1)βm ln βm, δt = lnΦt − (η − 1)βlwt − (η − 1)βm pm

t .
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Table 1.11: Estimation Results of the Markov Process for Productivity

Baseline (2) (3)

η 4.871**

(0.143)

βk 0.070*** 0.051***

(0.015) (0.004)

α0 0.120***

(0.018)

α1 0.945*** 0.168***

(0.011) (0.004)

αe 0.021** 0.064***

(0.10) (0.019)

αi 0.026*** 0.072***

(0.007) (0.012)

αie -0.008 -0.019

(0.516) (0.023)

Constant 0.120*** 2.649***

(0.018) (0.137)

Obs 2531 2531 2406

Bootstrapped standard errors in parametheses in Columns (1) & (2).

Column (3) contains the estimation results of the profit function.
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1.9.5.3 Static and Dynamic Estimates with Controls for Heterogeneity

Table 1.12: Dynamic Parameter Estimates with Controls for Heterogeneity

(1) (2) (3) (4)

parameters distribution mean realized mean
∑ R∑

R
C
R
∑ Π∑

Π
C
Π

(mil.RMB) (mil. RMB)

Full Model

Internal γF 334.3 22.9 0.17 1.37

(31.986) (4.796)

γ f 1.62 1.59 0.010 0.066

(0.081 ) (0.066)

External λF 142.46 16.8 0.079 0.428

( 21.549) (2.440)

λ f 3.98 2.44 0.018 0.112

(0.085) ( 0.206)

Model without R&D Organization

Startup Cost 142.46 16.8 0.079 0.428

Continuation Cost 3.98 2.44 0.018 0.112

In 2002, 1USD≈8RMB. SE in brackets.

1.9.6 Additional Analysis

Table 1.13: Transition and Aggregate Productivity from 50% Reductions in R&D Costs, Computed

from 100 Simulations

Reduction in Reduction in

Startup Cost Cont. Cost

(1) (2) (3) (4) (5) (6)

RDt ω̄ k̄ RDt ω̄ k̄
nt−1 +0.040 2.690 16.4 +0.026 2.634 16

RDt−1 -0.004 - - +0.028 - -

N (%) +0.030 - - +0.050 - -
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Chapter 2

Innovation and Prices (with Jordi Jaumandreu)

2.1 Introduction

This paper investigates the impact of process and product innovations on the output prices set by

firms. It uses prices reported over an extended period of time by a sample of manufacturing firms.

We assume prices are set with reference to (short run) marginal cost and hence they have to reflect

variations in efficiency of production, both across firms and over time. Productivity, in turn, shifts

with the introduction of process and product innovations by firms.

Models almost universally assume firms set prices with reference to marginal cost, although

also recognize that optimal markups over marginal costs can vary with a host of factors such as the

type and intensity of competition, firm behavior, the state of the market, and dynamic considera-

tions.1 Marginal cost, both in the short and long run, depends on firm-level productivity, and hence

evolves according to the firm’s innovation activities and, in particular, the introduction of process

and product innovations. This level of productivity is usually considered heterogeneous and unob-

served, something to be measured together with the impact that process and product innovations

have on it.2 Process innovations, aimed at reducing cost, are expected to shift the marginal cost

function downwards. The introduction of product innovations (improved or new goods) are ex-

pected to change cost in more heterogeneous ways. Quality upgrades of the goods may sometimes

1This is a consequence of profit maximization, which implies that marginal revenue should equal marginal cost. Hall

and Hitch (1939) is a departure from this view, in what Ellison (2006) characterizes as an early contribution to behavioral

industrial organization.
2The literature on estimating heterogeneous unobserved productivity with structural methods starts with Olley and

Pakes (1996); see also Levinsohn and Petrin (2003b) and Ackerberg et al. (2006). Latest models allow productivity to

be endogenously determined. Peters et al. (2013), for example, model firms’ marginal cost as depending on process and

product innovation in the way that we are going to adopt in this paper. Aw et al. (2011) and Doraszelski and Jaumandreu

(2013) are papers in which endogenous efficiency depends on R&D expenditure.
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imply less unobserved productivity, at least temporarily.3,4

The final impact of innovation on prices is then something that depends on two very different

mechanisms. The first is how innovations affect marginal cost as described above. The second is

how firms translate the variations in marginal costs to prices, and specifically how the changes in

cost due to innovations are passed onto prices. Although theory offers some guidance on how these

processes are expected to work, it is something mainly to be investigated empirically.

Without changes in prices, markups would be continuously eroded by the increase in costs and

subjected to more discrete and heterogeneous changes due to the impact of process and product

innovations on costs. With prices fixed we expect process innovations to enlarge margins and

product innovations to either increase or decrease them; there two additional important mechanisms

by which innovation can affect margins.

On the one hand, innovations are likely to enlarge the demand for the product of the firm and

maybe modify the price sensitivity of the clients with respect to the good. This seems particularly

likely for product innovations, but it could be also true for process innovations.

On the other hand, innovation induced changes on demand in principle give firms incentives to

continuously adapt prices to their profit maximizing levels. But a huge literature on price changes

has given many reasons for which firm-level prices may show inertia5 and shown it to be empir-

ically relevant.6 This literature has considered fixed and variable costs of price adjustment and

3For example, the new production may require new labor skills and material qualities not fully accounted for in the

observable part of cost. And, when “learning by doing” is important, firms may lack experience in producing the new

good and unobserved productivity goes down as a result.
4In addition, as most firms are in practice multiproduct, product innovations often only modify the product mix and

their impact on cost are expected to be generally milder.
5Economists have discussed the rigidity of prices and its consequences at least since Berle and Means (1932). Models

of adjustment costs in prices at the firm level were advanced, for example, in the works of Barro (1972) and Sheshinski

and Weiss (1977, 1992) with lumpy costs generating inaction, and in Rotemberg (1982) with strictly convex costs

generating partial adjustment. Carlton (1985) discusses the issue of price rigidity from the point of view of industrial

organization in the first IO Handbook. A recent contribution to the theory of rigid prices (in the presence of collusion)

is Athey and Bagwell (2008).
6Early works described the micro price-setting of particular industries and cases, e.g. Cechetti (1986), Carlton

(1986), Slade (1991), Lach and Tsiddon (1992) and Kashyap (1995). Slade (1998) and Aguirregabiria (1999) are full

structural dynamic models that estimate firm-level fixed and variable adjustment costs. Newer evidence has incorpo-

rated interindustry studies and surveys on price setting. Reviews of the extensive accumulated evidence can be found

in Álvarez et al. (2006) for Europe and Klenow and Malin (2010) for the US. Two recent studies using respectively

industry and firm-level data are Goldberg and Hellerstein (2011) and Eichenbaum et al. (2011). The latest is part of a

huge literature that combines detailed micro-evidence with the macro discussion of the neutrality of money. A recent

contribution of this kind is Midrigan (2011).



www.manaraa.com

50

developed models for both discrete and level changes in different situations. The costs of changing

prices could refer to menu costs, costs of convincing customers the necessity of the new prices, and

perhaps dynamic considerations on future demand.

No literature, at least not to our knowledge, has explored the role that process and product

innovation may play on the costs of adjusting prices but it is clear that it can be very important.

When process innovations reduce marginal costs they also reduce the cost of updating the margin,

because it can be redressed without changing price or changing it by a smaller amount. Implement-

ing product innovations may imply important differences in the cost of changing prices (because,

for example, the different client’s information requirements when the product is new). In other

words, process and product innovations become state variables of the dynamic problem of prices.

All the above makes a very strong simplification to consider that margins are constant, as they

were in a permanent long-run equilibrium. But still more important is to recognize that ignoring the

markup changes due to innovations is likely to induce an important bias in the estimated impacts

of process and product innovations on prices and costs and other variables that involve price or

price and cost. Intuitively, we may be leaving in the residuals changes in the margins that are

correlated with process and product innovations. For example, this paper finds that when process

innovations decrease costs there is an incomplete pass through to prices, and firms enlarge their

margins as a result. This may explain the insignificant impact of process innovation on prices in

an OLS framework, and can also explain the weak effects that researchers get for the impact of

process innovation on "revenue" productivity.7

The model that we develop in this paper takes advantage of the fact that we (imperfectly)

observe both margins and prices.8 It specifies the (log) margin over marginal cost as the result of

a dynamic decision of the firm. We show that, given the rest of relevant variables, choosing an

optimal price is the same as choosing an optimal markup. So in the model the firm directly decides

7In principle longer firm-level series should be able to deal satisfactorily with these problems, but typical panel data

sets are still just characterized by few time observations for each individual.
8On the one hand, we have firm-level price indices, on the other we estimate the markup as the scale parameter times

the the price-average cost margin: ν R
C = ν P

AC , where R is revenue, C are variable costs, P is price and AC is average

cost. This is an alternative to estimate markup in the older IO literature recently revisited by De Loecker and Warzynski

(2012).
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if it wants to update the value of the margin and by how much. To do this, the firm weighs the

profits against the costs of changing the margin.9 The cost of adjusting the margin is specified as

a function of its level, the state of the demand for the product, whether the firm has introduced a

process or product innovation and other state variables. The implication of the model for reduced-

form estimation is that the margin is likely to follow a first order Markov process that also takes

into consideration the roles of all the state variables, observed and unobserved.

Then we nest this margin in a structural equation that gives account of (log) price as the result of

both the evolving markup and the marginal cost of the firm. Marginal cost is modeled as the result

of observable variables and unobserved productivity, the latter specified as an endogenous Markov

process which depends on the introduction of process and product innovations. We estimate the

model as a nonlinear simultaneous system with two dependent variables (margin and price) and

cross-equation restrictions on the parameters. We estimate two versions of the model. In one,

there are no adjustment costs of prices and the firm sets the markup according to the elasticity of

demand (as impacted by cyclical changes and innovations). In the other, the markups follow the

law of motion derived from the dynamic model. In this version we only have implicit demand

"equivalent" elasticities, or elasticities that would determine the same markup that we see under

optimal dynamic pricing.

Our basic model considers the short-run marginal cost proportional to average variable cost

(that is, the short-run parameter of elasticity of scale is constant) and hence takes the choice of

the firm as the choice of its price-average cost margin up to a constant. It can be argued that the

observed price-average cost margin ignores some relevant components of marginal cost, such as

the adjustment costs of labor. Conversely, it could be argued that the relevant marginal cost for

the firm to set the markup over should not include short-run cyclical components.10 One important

advantage of our approach is that we can test for the relevant marginal cost by including in our

9The costs of changing the margin are the costs of changing the price when this change is needed plus some specific

costs. For example, an increased margin may augment the cost of dealing with the retributions of profits among managers

and workers.
10It has been argued that firm set prices with an optimal markup on "reference" marginal costs, whose time variation

is less frequent than the very short-run marginal costs. E.g., Eichenbaum et al. (2011) provides empirical evidence for

this price setting behavior of a major US retailer.



www.manaraa.com

52

specifications the relevant corrections to the observed price-average cost margin. Our conclusion

is that labor adjustment costs are a relevant part of marginal cost.

There are at least three reasons for the interest in the details of the impact of innovation on

prices. First of all, how technological change via firm-level innovation transmits to prices is rele-

vant for understanding the working of many economic forces. For example, prices play a crucial

role in the allocation of resources and thus growth. When a process innovation induces a price

decrease, market demand for the good is expected to increase. As a result, the demand for inputs

required for production is expected to increase by more than what is needed to compensate for any

input displacement provoked by technology. However, the magnitude and how complete, rapid and

heterogeneous is this mechanism is something to be assessed empirically.

Second, the analysis of what is in firm-level prices is important for addressing many key ques-

tions of productivity measurement. The quantities used in productivity analysis are, almost without

exception, obtained by deflating firm revenue by a price index. When an industry-wide index is

used, it has been argued that it leaves out the difference between the firm-level and the general

indices and one may get biased estimates as a result.11 In fact, revenue conditional on inputs and

their prices may not contain any information on productivity.12 This clearly contrasts with the host

of estimates of productivity that find productivity growth using revenue deflated by a non firm-level

price index. An explanation for these results is that productivity is not instantaneously passed onto

prices. When this is the case, revenue conditional on inputs and their prices is no longer invariant

to productivity.13

Lastly, how well prices reflect productivity improvements is important for the measurement

of welfare. On the one hand, if prices do not accurately reflect technical efficiency improvements

then the analysis of the increases in consumer surplus coming from innovation becomes more

11This problem was firstly pointed out by Klette and Griliches (1996). Later, it has been at least addressed by ?,

Loecker (2011) and Katayama et al. (2009), who propose different ways to deal with it.
12Let’s consider for simplicity the case of constant returns to scale. Production function is Q = F(x)eω,whereω stands

for idiosyncratic productivity and F shows CRTS. Cost is C = c(w)Qe−ω, where w represents prices, and marginal cost

MC = c(w)e−ω.Under a markup
η

η−1
, revenue is R = PQ = η

η−1
c(w)e−ωF(x)eω = η

η−1
c(w)F(x), so conditional on inputs

and their prices it does not depend on productivity.
13Suppose that at a given moment price is P = η

η−1
c(w)e−θω, where θ < 1 reflects the partial transmission of produc-

tivity to prices. Now revenue is R = η

η−1
c(w)F(x)e(1−θ)ω.
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difficult. By the same token we can have prices that do not properly reflect product novelty. There

is an ongoing literature that studies how the methods applied by Statistical Offices with respect

to new goods may impact welfare measurements.14 One relevant dimension of this problem is to

understand how firms price product improvements in practice.

To estimate our model we use the prices reported over an extended period of time (17 years)

by a sample of Spanish manufacturing firms. We use data on ten (unbalanced panel) industry

samples, which in total amount to more than 2,300 manufacturing firms and 17,000 observations,

corresponding to the period 1990-2006. We have firm-level price indices for each firm, constructed

from the reported yearly output price increases in the main market, we observe the timing of the

process and product innovations introduced by firms, and we have the relevant information to

construct margins, output and input use.

Preliminary GMM estimates show a good fit of the most general model. Margins show inertia

but tend to change procyclically with the state of the market. Importantly, firms tend to take ad-

vantage of process innovations to enlarge margins by not passing onto prices the decrease in cost.

Product innovations, instead, do not affect margins. Our model cannot detect if this is the effect of

product innovations not affecting the elasticity of demand or the firm’s reluctance to modify mar-

gins when new products are introduced. On the other hand, process innovations unambiguously

increase productivity and thus decrease cost. Product innovations are on average associated with

productivity increases but by amounts that are less than those associated with process innovations.

Consequently, the reductions in cost as a result are not as big and, for some industries, product inno-

vations increase cost. Compared with the simplest model, our dynamic specification gives sharper

cost reducing effects of process innovations and more complex effects of product innovations.

The paper is organized as follows. In Section 2, we lay out the econometric model under static

and dynamic pricing. In Section 3, we focus on the method of estimation for the model of dynamic

pricing. Section 4 discusses the data and Section 5 presents the estimation results. Finally Section

6 concludes.

14See, for example, Pakes (2003).
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2.2 Model

In this section, we first lay out the econometric model that gives rise to a general system of equa-

tions that describes the structural link of prices, productivity and innovation. The identification

of these equations is then discussed, but their exact specifications depend on whether there exists

static or dynamic pricing or not. Thus the rest of the section is devoted to deriving the system of

estimable equations under either scenario.

2.2.1 The Structural Link of Prices, Productivity and Innovation

We assume that firm j operates in a monopolistically competitive market and sets the price of its

product with a markup on (short-run) marginal cost.15 How large is the firm demand at given

price may differ according to exogenous and endogenous shifters that we discuss later in detail.16

Let’s write demand for the moment as Q jt = Q(P∗jt,Z jt), where Q jt and P∗jt represent quantity and

(unobserved) price and Z jt is a vector of shifters. We assume that the researcher observes price

with an error (see below).

The firm knows its cost function. We assume that the firm production function is

Q jt = F(K jt, L jt,M jt) exp(ω jt),

where K jt, L jt, and M jt stand for capital, labor and materials, and ω jt represents the Hicks neutral

level of efficiency of firm j. Following the literature we call ω jt productivity, and it is observed by

the firm but unobservable for the econometrician. The firm minimizes cost of labor and materials

given capital, W jtL jt + PM jt M jt, where W jt and PM jt are the prices of labor and materials. Variable

cost minimization implies the existence of the function C jt = C(K jt,W jt, PM jt,Q jt/ exp(ω jt)) and

15By monopolistic competition we understand that each firm faces a downward-sloping demand for its product, makes

no profit in the long run equilibrium, and a price change by one firm has only a negligible effect on the demand of any

other firm (Tirole, 1989).
16Later we are going to consider the following shifters: an index of industry prices PIt, the state of the demand for the

product of the firm Djt and the introduction of process and product innovations z jt and djt.
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marginal cost can be written as

MC jt = MC(X jt) exp(−ω jt), (1)

where X jt = {K jt,M jt,W jt, PM jt} is a vector of observable variables (see Appendix A). Cost mini-

mization given capital implies MC jt =
1

εL jt+εM jt
AC jt, where εL jt and εM jt are the output elasticities

of labor and materials. We assume that the short-run parameter of scale ν = εL jt + εM jt is constant

and less than unity.

The firm sets price by choosing the optimal markup over marginal cost μ jt =
P∗jt

MC jt
. Under our

assumptions, profits at time t can be written as a function of the markup given capital, productivity,

input prices and shifters:17

π jt = R jt −C jt =

(μ jt

ν
− 1
)

C(K jt,W jt, PM jt,Q(μ jt,Z jt,K jt,W jt, PM jt , ω jt)/ exp(ω jt))

= π(μ jt,K jt,W jt, PM jt,Z jt, ω jt).

The problem of choosing the optimal price given the rest of the variables can be therefore set,

without loss of generality, as a problem of deciding the optimal markup. We will later find this fact

very useful for the specification of the dynamic model. We are going to assume that observed price

meets the relationship

P jt = P∗jt exp(e jt) = μ jt MCit exp(e jt), (2)

where e jt is a measurement error orthogonal to all information available when the firm takes the

decisions.18

17The markup μ jt =
P∗jt

MC jt
= ν

P(Q jt ,Z jt)Q jt
C(K jt ,W jt ,PM jt ,Q jt/ exp(ω jt))

is a monotonic function of Qjt given the rest of variables, and the

inverse function Qit = Q(μ jt,Zjt,Kjt,Wjt, PM jt , ω jt) exists. Monotonocity holds because the derivative
∂μ jt
∂Q jt
= − μ jt

Q jt
( 1
η jt
+

1
ν
− 1), where η jt stands for the (absolute value of) elasticity of demand, is negative for any positive markup.
18An important part of the literature on prices has shown that prices tend to follow a framework that can be seen as

"reference" prices responding to "reference" costs. Although the underlying rule is quite inertial, prices tend to vary

frequently in the short run. For a recent example see Eichenbaum et al. (2011) on prices from a large US supermarket

retailer. In our paper, by means of the disturbance e jt we could extend our model to additionally allow for sundry factors

that are unexpected at the time of setting the price. In this extension the demand should be modified to be a function of

Pjt rather than P∗jt.
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Our interest lies in endogenous productivity, or productivity that grows as the result of the

firms’ innovation efforts.19 We assume, as in the subsequent literature to ?, that ω jt follows a first

order Markov process and we model productivity as depending on past productivity and the shifts

induced by the introduction of process and product innovations.20 That is,

ω jt = g(ω jt−1, z jt, d jt) + ξ jt, (3)

where z jt and d jt are indicators of the process and product innovations introduced by firm j, g is

an unknown function aimed at picking up both the path dependence of productivity as well as the

unknown impact of the innovations, and ξ jt is a random innovation mean-independent of all the

arguments of g(·). Here we specify z jt and d jt to affect productivity contemporaneously but in fact

this is an empirical issue and we are going to experiment with these variables lagged as well.

Inserting (3) in (1) and (1) in (2) and taking logs we have our structural model linking prices to

innovation:

p jt = ln μ jt + mc(X jt) − g(ω jt−1, z jt, d jt) − ξ jt + e jt. (4)

This equation shows that we expect prices to structurally evolve according to productivity and

innovation. But also that we will only be able to pick up this relationship as long as we adequately

control for endogenous markups and the observable part of marginal cost.

Estimation of equation (4) presents two main difficulties from the point of view of estimation:

neither lagged productivity ω jt−1 nor the markup μ jt are directly observable. Now we detail how

we deal with these two problems.

Unobserved productivity

Unobservable lagged productivity ω jt−1 is interrelated with the observables z jt and d jt. In addition

ω jt−1 is likely to be correlated with most of the explanatory variables. In order to estimate the

19The endogenous productivity literature models productivity shifting with the R&D activities of firms. See, for

example, Doraszelski and Jaumandreu (2013); Aw et al. (2011); Peters et al. (2013) and Boler, Moxnes and Ullveit-Moe

(2015).
20This is also the specification used in Peters et al. (2013).
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model we will employ an Olley and Pakes (1996) type of procedure, replacing the unobservable

ω jt−1 by an expression in terms of observables. We discuss several alternatives in Appendix B

and the implementation below. Let us write in general ω jt−1 = f (Z jt−1), noticing that the set

Z jt−1 changes with the different alternatives. The estimable model can now be written as

p jt = ln μ jt + mc(X jt) − g( f (Z jt−1), z jt, d jt) − ξ jt + e jt.

Markup estimation

On the other hand, we cannot address in general the estimation of the markup inside this equation

without incurring serious problems of identification. For example, if d jt and z jt affect the markup

then these variables enter two parts of the equation. As a result, the productivity impact of these

variables cannot be separated from their role in determining the margin. However, under our as-

sumptions, we have an observed variable that differs from μ jt only by a constant and an uncorrelated

error. That is, we know from equation (2) that

ln
R jt

C jt
≡ ln

P jt

AC jt
= − ln ν + ln μ jt + e jt. (5)

Let’s write ln μ jt = h(Y jt) + ε jt where h(·) is the expectation of (log) markup conditional on the set

of observed variables Y jt. This implies that we can estimate the system

r jt − c jt = − ln ν + h(Y jt) + ε jt + e jt

p jt = h(Y jt) + mc(X jt) − g( f (Z jt−1), z jt, d jt) − ξ jt + ε jt + e jt,

where r jt and c jt are the logs of revenue and variable cost. We can impose the equality of h(·)
across equations.21 We will later see that set of variables Y jt is going to be a subset of the union of

the sets X jt and Z jt plus an exogenous variable describing the state of demand for the products of

the firm.

21The constant implicit in h(·), however, cannot be estimated separately from any other constant in the equations.
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2.2.2 Identification

We have developed the model with a minimum of functional form or distributional assumptions.

Is the model identified at this level of generality? To answer this question notice first that the set

X jt contains only one endogenous variable, the input quantity M jt, and the set Z jt−1 none. M jt is

the only variable that is determined once the innovation ξ jt is known. All the rest of the variables

are likely to be correlated with productivity but, once the predictable part of productivity has been

specified in terms of observables, it only remains unobserved the value of the innovation ξ jt. This

innovation is only revealed after the values of these variables have been chosen. This is true for

the innovation variables because they are the (partly random) outcome of past R&D investments.

And this is true for the input prices under the assumption that they are determined in competitive

markets and hence given for the firm.

Do we have instruments for M jt? The answer is yes, but the available instruments depend on

the alternative Z jt−1 sets. Appendix B identifies two possible alternatives to substitute for ω jt−1:

the inverted demand for an input (materials, say) and the inverted production function. If we are

replacing ω jt−1 by the inverted conditional demand for materials, a natural instrument for M jt is

L jt−1. Variable L jt−1 is excluded from the inverted conditional demand, so it doesn’t appear in

the equation, and according to the model is correlated with M jt−1 and hence M jt. If we are using

the inverted production function, two natural instruments are the lagged input prices W jt−1 and

PM jt−1. With this kind of substitution there are no input prices in the expression that replaces

ω jt−1 and lagged input prices are, however, related to M jt. Since M jt is correlated to M jt−1, it is

also correlated with the lagged prices that determine M jt−1 . The model is hence identified in very

general conditions. In practice we use a particular parametric specification that makes identification

straightforward.

2.2.3 Static and Dynamic Pricing

We consider different hypothesis for the choice of μ jt. First, we assume that the choice of the

markup is a static problem. Up to our knowledge all empirical exercises on productivity estimation
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have used explicitly or implicitly this assumption. Then, we consider that the choice of the optimal

markup as a dynamic problem due to the presence of adjustment cost of prices.

Static Pricing

If the firm maximizes current profits the solution to the optimal μ jt has the form μ jt =
η jt
η jt−1

, where

η jt is the elasticity of demand.22 The model can be written as

r jt − c jt = − ln ν + ln
η(Y jt)

η(Y jt) − 1
+ ε jt + e jt

p jt = ln
η(Y jt)

η(Y jt) − 1
+ mc(X jt) − g( f (Z jt−1), z jt, d jt) − ξ jt + ε jt + e jt. (6)

The firm sets the markup according to the elasticity of demand. This is a model that can be taken

to the data by specifying the elasticity as a function of the relevant variables. For example, in

the empirical exercise we consider that Y jt = {D jt, z jt, d jt}, where in addition of the innovation

dummies we include the indicator D jt of the state of the firm market.

Dynamic Pricing

There is a large micro and macro literature that considers that setting prices is subject to adjustment

costs and hence the resulting prices should be envisaged as the optimal solution of a dynamic

problem. Stemming from this tradition we consider costs of adjusting the markup μ jt and specify

it as the result of a dynamic optimization problem. The adjustment costs of markup include the

costs of adjusting prices but are somewhat different, since the markup can change even if the price

does not change. In what follows we derive the law of motion for markup under the implications

of dynamic pricing.

Now we need to be specific about the demand shifters Z jt. Demand for the product of the firm

depends on its price, prices in the industry, the state of the market, product innovations and (maybe)

22 ∂π jt
∂μ jt
= 1

ν
C jt + (

μ jt
ν
− 1)

∂C jt
∂Q jt

∂Q jt
∂μ jt
= 1

ν
C jt − (

μ jt
ν
− 1)

∂C jt
∂Q jt

Q jt

μ jt(
1
η jt
+ 1
ν −1)
= 1 − (

μ jt
ν −1)

μ jt(
1
η jt
+ 1
ν −1)
= 0 implies μ jt =

η jt
η jt−1

.
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process innovations. Both the state of the market and innovations can shift the demand and/or affect

its elasticity with respect to price. Let’s write

Q jt = Q(P∗jt, PIt,D jt, z jt, d jt),

where PIt is the industry price and D jt is the state of the market.

Capital K jt is a state variable (whose dynamic choice we leave implicit for simplicity) and the

prices of the inputs are the industry wide prices WIt = {Wt, PMt} subject to a vector of firm level

disturbances ζ jt. Cost can hence be written as

C(K jt,WIt, ζ jt,Q jt/ exp(ω jt)),

where WIt represent industry input prices and ζ jt the idiosyncratic shocks in the input prices.

Adjustment costs in markup consist of costs that vary with markup in the previous period

μ jt−1, the state of the market D jt, and the introduction of process and product innovations z jt−1 and

d jt−1. The introduction of a process innovation is likely to reduce cost and thus enlarge the margin,

lessening the markup adjustment costs. The introduction of a new product may facilitate or hinder

the change of the markup, perhaps depending on consumers’ reception of the price change. Let’s

write the adjustment costs as

A(μ jt, μ jt−1,D jt, z jt, d jt).

Replacing ω jt as before by the law of motion g(ω jt−1, z jt, d jt)+ ξ jt it is easy to see that static profits

can then be written as

π jt = π(μ jt,K jt, PIt,WIt, ζ jt,D jt, z jt, d jt, ω jt−1, ξ jt).

Collecting the state variables in the vector S jt = (μ jt−1,K jt, PIt,WIt, ζ jt,D jt, z jt, d jt, ω jt−1, ξ jt)
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the Bellman equation for the dynamic problem is

V(S jt) = max
μ jt

[π(μ jt,K jt, PIt,WIt, ζ jt,D jt, z jt, d jt, ω jt−1, ξ jt) − A(μ jt, μ jt−1,D jt, z jt, d jt)]

+βEt[V(S jt+1)|S jt, μ jt],

which gives rise to a policy function for the markup that has the form

μ jt = h̃t(μ jt−1,K jt,D jt, z jt, d jt, ω jt−1) + ε̃ jt,

where we have collapsed the industry prices in the time subindex and collected together the errors

in the disturbance ε̃ jt.

The latest equation gives us the reduced form for the markup that corresponds to the setting of

the price as a dynamic problem. Past markup shows up here because the adjustment costs make it

a state variable. The firm chooses when and by how much to change the markup according to the

state of the market and the introduction of innovations. Notice that the capital of the firm, which

affects the current costs, and the impact of the evolution of future industry output and input prices

(represented by the time dependence) as well as lagged productivity are also part of the equation.

Recall from equation (5) that r jt−1 − c jt−1 + ln ν = ln μ jt−1 + e jt−1. Integrating the expectation

function over the lagged unobservable e jt−1, and replacingω jt−1 by f (Z jt−1) the system of equations

becomes:23

r jt − c jt = − ln ν + ht(r jt−1 − c jt−1 + ln ν,K jt,D jt, z jt, d jt, f (Z jt−1)) + ε jt + e jt

p jt = ht(r jt−1 − c jt−1 + ln ν,K jt,D jt, z jt, d jt, f (Z jt−1)) (7)

+ mc(X jt) − g( f (Z jt−1), z jt, d jt) − ξ jt + ε jt + e jt.

The systems of equations (6) and (7) only differ in the h(·) function that we are using to estimate

the conditional expectation of the margin. In the first case we are estimating the current elasticity

23We slightly abuse the notation by writing the function ht(·) and the error ε jt using the same symbols as those in

equation (6).
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of demand, in the second case the elasticity of demand is not the relevant pricing rule although we

will be getting implicitly an "equivalent" elasticity derived from the firm choice.

Here the first equation of the system doesn’t introduce any particular problem, because all

variables are by assumption uncorrelated with the composite error ε jt + e jt. The presence of the

unobservable ω jt−1, replaced by f (Z jt−1), implies the same restrictions on usable instruments that

we have previously discussed in detail. As the function ht(·) shows up in the second equation we

well have to add any extra instrument used in the first equation to the set used in the second.

The marginal cost relevant for the firm may additionally include the adjustment costs of labor.

These costs are only partially included in the observed average cost (the part that has an accounting

counterpart, as the overtime done by the workers). A dynamic model where the costs of adjusting

labor are explicitly considered gives rise to expressions for these adjustment costs based on observ-

ables (Doraszelski and Jaumandreu, 2013, 2015, see). Here we develop a correction for the average

cost when there are labor adjustment costs that is based on the ratio of materials bill to wage bill

(see Appendix C). Assuming that one part of the relevant costs is already included in the observed

variable costs we have MC jt =
AC∗jt
ν (1 + sL jtΔ jt)

1−θ(1 + sL jtΔ jt)
θ =

AC jt
ν (1 + sL jtΔ jt)

θ, where AC∗jt

are latent average costs and AC jt observed average costs. According to this correction, the ratio of

revenue over variable costs should be written as

r jt − c jt = θ ln(1 + sL jtΔ jt) − ln ν + ln μ jt + e jt,

where sL jt is the share of labor in variable costs and Δ jt is the the gap between the wage and the

shadow price of labor under adjustment costs. When applying this correction, everything is as

our variable r jt − c jt becomes r jt − c jt − θ ln(1 + wL jtΔ jt), where θ is a parameter to be estimated.

We estimate the system with and without the adjustment cost correction, and the results favor the

specification with adjustment costs.

In what follows, we detail the estimation of the static and dynamic pricing model under a

particular parametric specification for the production function. This specification makes the model

particularly simple and the identification straightforward.
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2.3 Estimation

To take equations in (6) and (7) to the data, three components remain to be specified: the observable

component of marginal cost, the Markov process that governs the endogenous productivity process

and the markup.

Let us start by the marginal cost function. We consider for simplicity the Cobb-Douglas pro-

duction function

q jt = β0 + βkk jt + βll jt + βmm jt + ω jt,

so the short-run marginal cost function in terms of materials is

mc jt = κ − βkk jt + (1 − βl − βm)m jt + (1 − βl)pM jt + βlw jt − ω jt, (8)

where κ = −β0 − ln(βl + βm) − βl ln βl + βl ln βm.

With regards to the productivity process we are going to use the inhomogeneous Markov pro-

cessω jt = βt+g(ω jt−1, z jt, d jt)+ξ jt.Our preferred alternative is using the lagged inverted production

function to substitute for ω jt−1. Let us use f jt−1 as a shorthand for q jt−1 − βkk jt−1 − βll jt − βmm jt−1.

Specifyng g(·) as a complete polynomial of order three in its arguments we have:24

ω jt = βt + g( f jt−1, z jt, d jt) + ξ jt = βt + γ1 f jt−1 + γ2 f 2
jt−1 + γ3 f 3

jt−1 + γ4z jt + γ5d jt

+ γ6 f jt−1 · z jt + γ7 f 2
jt−1 · z jt

+ γ8 f jt−1 · d jt + γ9 f 2
jt−1 · d jt

+ γ10 f jt−1 · z jt · d jt + γ11 f 2
jt−1 · z jt · d jt + ξ jt. (9)

It remains to specify the function h(·). In the static case we use

h(·) = ln
η jt

η jt − 1
= ln

1 + exp(y jtλ)

exp(y jtλ)
= ln(1 + exp(y jtλ)) − y jtλ, (10)

24We implicitly collapse the constant of the unknown function in the constant of the equation.
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where y jt = {md jt, d jt, z jt}. The function restricts elasticity to be greater than one while allows

for its cyclical fluctuation according to the firm-level state of the market indicator md jt or market

dynamism.

In the dynamic case we specify the law of motion for markup as a function of a polynomial in

the the lagged markup, capital, the firm-level state of the market indicator md jt or market dynamism,

product and process innovations, and lagged productivity replaced by f jt−1:25

ht(·) = β′t + λ1(r jt−1 − c jt−1) + λ2(r jt−1 − c jt−1)2 + λ3(r jt−1 − c jt−1)3

+ λ4k jt + λ5md jt + λ6z jt + λ7d jt + λ8 f jt−1. (10′)

Lastly, recall that the relevant markup (r jt − c jt) may change depending on whether we additionally

consider there are adjustment costs in labor or not

In the estimations that we present below we plug expressions (8), (9) and (10) into (6) for the

case of static pricing, and expressions (8), (9) and (10′) into (7) for the case of dynamic pricing to

estimate each system of equations by two-step nonlinear GMM. Write the residuals ν1 jt = ε jt + e jt

and ν2 jt = −ξ jt+ε jt+e jt as a function of the variables x jt and the vector θ of parameters to estimate.

Stacked for each firm j, the GMM problem is

min
θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
N jA1(z j)ν1 j(x j, θ, )

1
N jA2(z j)ν2 j(x j, θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
′

Ŵ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
N jA1(z j)ν1 j(x j, θ)

1
N jA2(z j)ν2 j(x j, θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where A1(·) is an L1 × T j and A2(·) an L2 × T j matrix of functions of exogenous variables z j (a

vector partially overlapped with x j); ν1 j(·) and ν2 j(·) are the T j×1 vectors of residuals, and N is the

number of firms. L = L1 + L2 denotes the total number of moments that we use and T j the number

of observations for firm j. For the first step we use the consistent weighting matrix

25This particular specification legitimates to get rid of the constant ln ν.



www.manaraa.com

65

Ŵ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
( 1

N jA1(z j)A1(z j)
′)−1 0

0 ( 1
N jA2(z j)A2(z j)

′)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
and for the second the optimal weighting matrix. Lastly, notice that the subscript on A(·) implies

that we use different set of instruments for each of the two equations in the system. We have

estimated the equations under the dynamic pricing model and will now talk about the instruments

we used.

There are two equations in the system specified in (7). The set of exogenous variables for

the first equation includes: constant, time dummies (15), a polynomial of order three in lagged

markup, capacity utilization rate and a polynomial of order three in its lag, current and lagged

prices of capital, lagged variable input prices (price of materials and wage), lagged inputs (capital,

labor and materials) and the two dummies of lagged innovation.

The set of exogenous variables for the second equation includes those used for the first equation

and the following: a polynomial of order three in lagged inputs (capital, labor and materials), the

interaction of the two innovation dummies as well as their product with each one of the lagged

inputs.

Contemporaneous capital is a legitimate instrument. However, we avoid it because of potential

measurement error. For the same reason we have also omitted some of the polynomial terms in

lagged inputs and lagged markup for some industries. In the end, for the system of equations we

end up with a minimum of 70 instruments that expands to an upwards of 75 for certain industries.

We have to estimate 4 parameters that enter nonlinearly: βk, βl, βm, the parameters of the

marginal cost/production functions, and θ, the parameter on the labor adjustment cost in the model-

ing of the markups. We have 50 or 51 other parameters that enter linearly (7 or 8 coefficients from

the law of motion for markup,26 32 coefficients from the two sets of constant and time dummies

that correspond to each equation, and 11 polynomial coefficients in the productivity process), for

whose estimation we apply the procedure of “concentrating out.” This gives us a minimum of 16

over-identifying restrictions that allow to test for the specification.

26For some industries we have excluded capital in the markup specification.
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2.4 Data

We estimate the model with data on ten (unbalanced panel) industry samples, which in total amount

to more than 2,300 manufacturing firms and 17,000 observations, corresponding to the period

1990-2006. All variables come from the survey ESEE (Encuesta Sobre Estrategias Empresariales),

a firm-level panel survey of Spanish manufacturing starting in 1990. At the beginning of this

survey, firms with fewer than 200 workers were sampled randomly by industry and size strata,

retaining 5%, while firms with more than 200 workers were all requested to participate, and the

positive answers represented more or less a self-selected 70%. To preserve representation, samples

of newly created firms were added to the initial sample every subsequent year. At the same time,

there are exits from the sample, coming from both death and attrition.

The survey then provides a random sample of Spanish manufacturing with the largest firms

oversampled. Information on the firms include, in addition to the usual output and input quantity

measures, the firm-level variations for the price of the output and the price of the inputs, the in-

troduction of technological (process and product) innovations, and the indicator of the state of the

market market dynamism.27

Tables 1 and 2 report the size of the samples and some descriptive statistics. Table 1 focuses

on prices. The evolution of prices over the whole period is moderate, but heterogeneous enough

to motivate the exploration of the role of innovation in their evolution. An OLS regression of the

growth of prices on the dummies of process and product innovation, controlling by time dummies,

turns out to be hardly informative: almost no effect is statistically significant. Table 2 focuses on

innovation. The introduction of process and product innovations is more heterogeneous. Firms tend

to introduce more process than product innovations, at the approximate paces of one innovation

every three and four years respectively. Innovation is, as expected, especially important in the

more technology intensive sectors 3, 4, 5 and 6.

27Firms are asked to assess the current and future situation (contraction, stability, or expansion) of up to 5 separate

markets in which they operate. The index of market dynamism is computed as a weighted average of the responses and

proxies for the demand shifter.
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2.5 Estimation Results

We have carried out the estimation of the system of equations (7), i.e. under dynamic pricing, with

very sensible results that allow us to examine the impacts of innovation on prices. In the near future,

we would like to also compare results with those under static pricing to evaluate which model is a

better fit for the data. For the rest of this section, we first present these estimates (Table 3) and then

derive the implications for the productivity growth and price variations via also markup due to the

impact of innovation (Table 4).

The results of the preliminary estimates are summarized in Table 3. Columns (1)-(4) report the

key parameters from the markup equation, Columns (5)-(7) contain the results for the parameters

in the marginal cost/production function, and the last two columns present over-identifying test

statistics and p-values. As noted in Table 3, to reach these results we use instead contemporaneous

innovations in three industries (3, 8 and 9). In all but four industries (1, 2, 5 and 6) we are not able

to include capital in the margin without worsening the results. Overall, the specification test passed

in 8/10 industries.

The reported coefficients from the markup equation are those of market dynamism, innovation

and adjustment cost. These results suggest the state of the market has a significant positive effect

on the markup in six industries. Markup also increases in process innovation in seven industries.

The impact of product innovation, however, is non-significant in all of them. Lastly, the labor

adjustment cost parameter in column (4) is positive and of a reasonable size in all industries but

one.

The parameters in the marginal cost/production functions in Columns (5) to (7) are in general

good (although a few sectors show insignificant capital elasticities). Returns to scale are very close

to constant in all industries but one.

The last part of our analysis is to comprehensively summarize the relationship among innova-

tion, markup and prices using the estimates. Recall that innovation affects productivity and thus

marginal costs. Furthermore, there exists adjustment costs in the markup under dynamic pricing,

there exists adjustment costs in the markup, therefore cost changes induced by innovation may not
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be perfectly passed onto prices. To assess these two separate components, we first estimate the dis-

tribution of productivity ω jt and summarize them by industry and innovation category in Columns

(1)-(4) of Table 4. We then combine these productivity changes with changes in the markup due

to innovation to summarize the findings on final predicted price changes in Columns (5)-(8) of the

same Table.

To first get at the relationship between innovation and productivity, we first compute the indi-

vidual values of productivity growth rates, given by Δω jt = ω jt −ω jt−1. Then we split the industry

samples into observations corresponding to the introduction of a process innovation only, prod-

uct innovation only, both kind of innovations and, finally, observations corresponding to moments

without any kind of innovation. Finally, we calculate weighted averages of the rates of growth, us-

ing firms sales shares lagged two periods as weights and replicating the observations for the small

firms (less than 200 workers) as indicated by the known starting representativeness in the survey of

each kind of firm.28

The corresponding results that capture the relationship between innovation and productivity are

reported in Columns (1) to (4) of Table 4. They show that process innovation is associated with the

most productivity increase as expected. However, as discussed before we do not expect a particular

relationship between the increases in productivity when there is no innovation and when there is

product innovation. This remains largely an empirical question. We find that for these Spanish

manufacturing firms, absent any innovation there exist exogenous improvements in productivity

in 7 industries. When there is only product innovation productivity increases are less intense in

four industries and there is even a productivity decrease in two industries. It is then perhaps not

surprising that for firms that have both process and product innovation, productivity increases are

large in some industries, neutralized to near zero in some others and negative in the rest.

To arrive at the final predicted price changes, we need to also take into account the behavior

of the markup and the results are summarized in Columns (5)-(8) of Table 4. They show that ab-

sent innovation, prices decrease by a more modest amount of 0.6 percentage point a year across

industries on average. The introduction of process innovations changes this price decrease to 1.9

28Since the proportions were approximately 5% and 70% this implies replicating the smallest firms 14 times.
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percentage points a year, which is quite remarkable if we take into account that firms take advan-

tage of process innovations to enlarge the markup of 1.2 percentage points. Product innovation

sometimes decreases price, and other times increases it, giving an average of almost zero change.

Lastly, product innovations implemented together with process innovations tend to raise prices by

an average of 0.4 percentage points.

2.6 Concluding Remarks

This paper examines the impact of process and product innovations on prices set by firms. This

impact is modeled to be the result of two related processes: 1) the way in which innovation affects

productivity and hence marginal cost and 2) the extent to which firms pass changes in costs onto

prices via markup when there are adjustment costs. From this dynamic pricing problem with ad-

justment costs in markup, we derive a set of equations that is then estimated with yearly prices and

innovations reported by an unbalanced panel of Spanish manufacturing firms.

Our estimation results show that markup is highly persistent and mostly pro-cyclical. Process

innovations increase productivity and thus decrease marginal costs as expected. However, since

cost reductions are only imperfectly passed through to prices, firms are also able to take advantage

of process innovations by increasing their markups. In contrast, the effect of product innovations

on prices is ambiguous; after the launch of improved or new products, markups are not signifi-

cantly affected and productivity could either increase or decrease. The overall findings in the paper

contribute to the scarce literature on innovation and firm-level prices.
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2.7 Appendix

Appendix A

Variable cost minimization implies the cost function

C jt = C(K jt,W jt, PM jt,Q jt/ exp(ω jt)),

where W jt and PM jt stand for the prices of the variable inputs L jt and M jt respectively. Marginal

cost is

MC jt =
∂C jt

∂Q jt
=

∂C
∂(Q jt/ exp(ω jt))

(K jt,W jt, PM jt,Q jt/ exp(ω jt)) exp(−ω jt).

On the other hand, by Shephard’s lemma, optimal materials choice conditional on output is

M jt =
∂C jt

∂PM jt
= CPM (K jt,W jt, PM jt,Q jt/ exp(ω jt)).

Inverting the latest equation for Q jt/ exp(ω jt), and using the resulting expression to replace

Q jt/ exp(ω jt) in marginal cost, we get

MC jt = MC(K jt,M jt,W jt, PM jt) exp(−ω jt) = MC(X jt) exp(−ω jt),

where X jt = {K jt,M jt,W jt, PM jt} is a vector of observable variables. Variable M jt could be alter-

natively replaced by L jt. In practice we prefer to keep the specification with M jt because materials

are less likely to be subject to adjustment costs.
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Appendix B

The choice of which expression to use is not trivial. The inclusion of the disturbance e jt implies

that we only know the price decided by the firm up to this error: P jt = P∗jt exp(e jt). As in the

structural estimation of production functions, a natural choice for the expression to be used would

be an inverted input demand relationship. For example, profit maximization implies the demand

for materials

M jt = M(K jt,W jt/P∗jt(1 −
1

η jt
), PM jt/P∗jt(1 −

1

η jt
), ω jt).

But, as this equation makes clear, demands for labor and materials include the output price that

when specified in terms of observed price will include the error e jt. Having a variable measured

with error in the expression to use in the g(·) function, even if it is uncorrelated with everything, is

a drawback for the identification of the model.29

If we assume that we observe Q jt, however, we have more than one solution.30 A first possibil-

ity is inverting the (lagged) conditional demand for materials (see Appendix A), that is

ω jt−1 = ln Q jt−1 − ln C−1
PM

(K jt−1,M jt−1,W jt−1, PM jt−1).

Another possibility is directly inverting the production function

ω jt−1 = ln Q jt−1 − ln F(K jt−1, L jt−1,M jt−1).

29Scholars estimating production functions tend to avoid this complication by assuming that all prices are the same

for all firms and can be replaced by dummies. In this case prices disappear from the demand for materials, that can be

written Mjt = Mt(Kjt, ω jt). See, for example, Levinsohn and Petrin (2003b) or Loecker (2011).
30Quantity is obtained by dividing revenue by the observed price. If revenue and price are affected by the same e error

this ratio gives the correct quantity.
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Appendix C

Write the Bellman equation using the explicit profits in terms of labor and materials and adding the

cost of adjusting employment AL(L jt, L jt−1)

V(S jt, L jt−1) = max
μ jt

[
(μ jt

v
− 1
)

(W jtL jt + PM jt M jt) − A(μ jt, μ jt−1,D jt, z jt, d jt) − AL(L jt, L jt−1)]

+βEt[V(S jt+1)|S jt, L jt].

The first order condition for labor can be written as

(
1

ν

∂μ jt

∂Q jt
(W jtL jt + PM jt M jt jt) − ∂A jt

∂μ jt

∂μ jt

∂Q jt
− βEt[

∂A jt+1

∂μ jt
|S jt, L jt]

∂μ jt

∂Q jt

)
∂Q jt

∂L jt

+

(μ jt

v
− 1
)

W jt − ∂AL jt

∂L jt
− βEt[

∂AL jt+1

∂L jt
|S jt, L jt] = 0,

where we use the shorthands A jt, A jt+1, AL jt and AL jt+1 for the values of the adjustment cost func-

tions. From the first order condition for output it is easy to check that the first parenthesis can be

replaced by −
(
μ jt
v − 1

)
MC jt so that we obtain

MC jt
∂Q jt

∂L jt
= W jt

⎛⎜⎜⎜⎜⎜⎜⎝1 − 1

W jt
(
μ jt
v − 1

) ∂AL jt

∂L jt
− 1

W jt
(
μ jt
v − 1

)βEt[
∂AL jt+1

∂L jt
|S jt, L jt]

⎞⎟⎟⎟⎟⎟⎟⎠
= W jt(1 + Δ jt),

where Δ jt represents the gap between the wage and the shadow price of labor under adjustment

costs.

We can similarly obtain the following first order condition for materials:

MC jt
∂Q jt

∂M jt
= PM jt.

Adding the two first order conditions we can see that, under adjustment costs of labor, the relation-
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ship between marginal and average variable cost becomes

νMC jt =
W jtL jt + PM jt M jt jt

Q jt
(1 + sL jtΔ jt)

= AVC jt(1 + sL jtΔ jt),

where sL jt is the share of the wage bill in variable costs.

To estimate Δ jt we use the fact that with the Cobb-Douglas specification of the production

function the ratio of first order conditions gives

PM jt M jt

W jtL jt
=
βM

βL
(1 + Δ jt).

We assume that, for each firm, the average of the gaps tends to cancel over time and that
(̂
βM
βL

)
= 1

T j j
PM jt M jt
W jtL jt

. We then estimate Δ jt as

Δ̂ jt =

PM jt M jt
W jtL jt(̂
βM
βL

) − 1,

and ln(1 + sL jtΔ̂ jt) is constructed using the observed cost shares.
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Chapter 3

Do Firm Level Shocks Generate Aggregate Fluctuations?

(with Maria Francisca Perez Veyl)

3.1 Introduction

Business cycle fluctuations are often thought to have caused by aggregate shocks, since uncorre-

lated sector or firm level shocks average out in the aggregate due to the law of large numbers.

However, a number of recent studies show the diversification of idiosyncratic shocks breaks down

when sectoral linkages or firm size distributions are highly skewed. These studies provide the in-

sight that in an economy where few sectors serve as major input suppliers or few firms account for

a disproportionate share of production, shocks to these sectors or firms can propagate to generate

aggregate fluctuations.

While the sector based story has a long theoretical tradition accompanied by empirical evi-

dence,1 the relevance of firm level shocks to aggregate fluctuations remains to be acknowledged

and quantified. Gabaix (2011) was the first study to formally show that in an economy with fat-

tailed size distribution of firms, idiosyncratic shocks to firms diversify at a milder rate that leads

1Sector-based stories date back to the seminal work of Long and Plosser (1983) where they show input-output

linkages can propagate independent production shocks in each sector over time and across sectors with a six-sector

dynamic stochastic general equilibrium model. This study was later challenged by Dupor (1999) because if the number

of sectors is large enough, positive shocks in one sector can still be neutralized by negative shocks in others. Though

around the same time Horvath (1998, 2000) argue the cancellation of sector-specific shocks is affected by the existence of

factor demand linkages; whether shocks diversify depends on not the number of sectors but whether there are a handful

of them that are important inputs in the production processes of many others. Two recent studies, Carvalho (2008);

Acemoglu et al. (2012), build on Horvath’s insight and show that if there are only few input supplier sectors then the

convergence of aggregate volatility to zero slows down considerably. A productivity shock in one major sector has a

“cascading” effect in the economy and as a result affects not only the direct downstream sectors but also the series of

them that are interconnected with each other. In all aforementioned studies, the authors provide also empirical exercises

that support their theoretical models.
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to nontrivial effects on aggregate fluctuations. Further, output volatility originated from micro-

shocks is an increasing function of the Herfindahl index of firms’ sales shares, or in other words,

of how concentrated the economy is.2 The theoretical framework is then accompanied by an em-

pirical analysis where the author shows shocks to largest firms in the US statistically explains GDP

growth over the period 1952-2008.

In light of Gabaix’s theory, countries that are more concentrated than the US should observe

stronger effects of firm level shocks on aggregate fluctuations. However, since the theory is rel-

atively new and comprehensive panel data are not readily available for many countries, studies

investigating the effects of idiosyncratic shocks outside the US are scarce.

This paper contributes to the existing literature by examining the relevance of idiosyncratic

shocks to output fluctuations for three OECD countries (Germany, Canada and the UK) in addition

to the US. Figure 3.1a presents the relative size of the top 100 firms in terms of their sales to GDP

ratio in these four economies, and Figure 3.1b the Herfindahl index of firms’ sales share among the

largest 100 firms. Comparing with the US, the top 100 firms in other countries not only account for

a larger share of their corresponding GDP, they are also much more concentrated. These descriptive

statistics suggest large firms in these countries could be an important source of variability, and the

effects of idiosyncratic shocks on the aggregate should be stronger as a result.

To assess the empirical relevance of idiosyncratic shocks for output fluctuations in these coun-

tries, we regress the growth of GDP per capita on the “granular residual” and its different lags. The

granular residual, proposed by Gabaix (2011), is a transparent statistic that summarizes the impor-

tance of firm idiosyncratic shocks using the weighted sum of firm level shocks, where the weights

are calculated as the firms’ sales to GDP ratio to reflect their relative importance. This empirical

strategy allows us to work with a broader sample of countries as we would not require input-output

matrices to measure the importance of firm level productivity shocks for the economy, only annual

firms’ sales and employment, and countries’ GDP per capita are necessary.3

2The results in Gabaix (2011) only require economies with sufficiently large herfindahls. The central case of firms’

size being Zipf-distributed is justified because of its tractability and clean exposition. Also, this distribution generates

very high herfindahls.
3Despite using an empirical strategy that is lenient on data requirements, we still face some data limitations along

the time-series dimension. In the end, we are able to construct the granular residual using the top 100 firms for at least
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(b) Herfindahl Index of Top 100 Firms

Figure 3.1: Relative Size and Degree of Concentration of Top 100 Firms by Country

Our results show that idiosyncratic shocks to large firms are of little relevance in the UK or

Canada but explain roughly 1/3 of the output fluctuations in the US and Germany. Further investi-

gation indicates the top ranking firms are indeed the most important contributors to granular effects,

but because diversification is at work still in the UK and Canada these firms are not able to explain

GDP growth. Our study suggests that while firm size distribution is found to be highly skewed in

many economies,4 the ability of the largest firms to transmit shocks may not be universal and thus

should not be taken for granted.

The studies closest to ours are di Giovanni et al. (2014) and Foerster et al. (2011); they both

investigate the importance of firm level shocks but focus on one country each and differ in method-

ology. While the first finds support for the hypothesis that microeconomic shocks drive aggregate

fluctuations, like ours the second paper casts doubts on the validity of this hypothesis. Using de-

tailed French firm level data, di Giovanni et al. (2014) find firm-specific shocks to be almost twice

as important as the combined effect of sectoral and macroeconomics shocks in driving aggregate

sales growth. Further, they find that most of the effect is not coming directly from shocks to indi-

vidual firms, but input-output linkages proxied by firm-to-firm covariance. Foerster et al. (2011)

uses factor methods to decompose US industrial production and explore the plausibility of the

20 years for all of our countries.
4di Giovanni and Levchenko (2013) find in a set of 43 countries, firm size distributions are highly skewed and on

average close to Zipf.
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granular- and network-origins hypotheses of aggregate fluctuations. They find no support for the

granular hypothesis, and aggregate volatility is better explained by co-variability among sectors.

Furthermore, co-variability is explained by common factors, very little of which is the result of the

transmission via input-output linkages.

The rest of the paper is organized as follows. Section 3.2 describes the empirical specification

used to estimate the importance of firm level idiosyncratic shocks. In Section 3.3 we present the re-

gression results for the countries in our sample, and in Section 3.4 we deconstruct the differences in

the findings for the US and Germany versus those for the UK and Canada. Finally our conclusions

are summarized in Section 3.5.

3.2 Empirical Strategy

In this section, we first summarize the theoretical framework from which the granular residual is

derived and how to construct it. We then specify the empirical strategy and describe the data.

3.2.1 Granular Residual

In an economy with input-output linkages and endogenous input response, aggregate productivity

growth is a weighted sum of firms’ Hicks-neutral productivity growth, gzi :

gT FP =
∑

i

sales of firm i
GDP

gzi , (3.1)

where the weights
∑

i
sales of firm i

GDP capture the propagation effect from firm level shocks to the rest

of the economy. Domar (1961) and Hulten (1978) show that these are the appropriate weights to

measure the total effect of firm level productivity changes on aggregate productivity. The intuition

is that an increase in productivity in firm i will increase output of other firms that use firm i’s good

as an intermediate input, which in turn increases output again, and so on.

Without disturbances, growth in GDP is proportional to the growth in TFP:

gGDP = μ gT FP, (3.2)
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where μ ≥ 1 is the factor usage intensity that is a combination of the elasticity of substitution of

labor and output elasticities with respect to production inputs.5

Combining (3.1) and (3.2), the impact of idiosyncratic shocks on aggregate output is captured

by the following relationship:

gGDP = μ
∑

i

sales of firm i
GDP

gzi , (3.3)

where Γ∗ =
∑

i
sales of firm i

GDP gzi is Gabaix’s “granular residual.” Equation (3.3) provides the basis

for the regression framework to test the granular hypothesis: granular effects are said to be present

when the weighted sum of idiosyncratic shocks to large firms statistically explains GDP fluctuations

as measured by growth in GDP per capita.

The only detailed calculation of this empirical strategy is the construction of firm level shocks.

To avoid data availability issues, we also estimate firm level productivity using labor productivity

of firm i:6

zi = ln
sales of firm i in year t

number of employees in firm i in year t
. (3.4)

To compute the shocks to firms’ productivity growth, we model firms’ labor productivity

growth, g, as depending on a set of firm’s characteristics, Xi jt, and an idiosyncratic shock, εi jt:

gi jt = β
′Xi jt + εi jt. (3.5)

For simplicity, we use year and industry dummies to proxy for firm’s characteristics:

git = c + dt + εit (3.6)

gi jt = c + dt + IND jt + εi jt, (3.7)

5Consider an economy with the production technology Y = AtLαt and consumer preference Ut(Ct, Lt) = log(Ct −
L1+1/φ

t
1+1/φ

). With competitive markets for output and labor, the equilibrium is characterized by Nt = (αAt)
1

1+1/φ−α and Yt =

αA
1+1/φ

1+1/φ−α
t . In this economy, output growth is proportional to TFP growth Ŷ = μÂ, where μ = 1+1/φ

1+1/φ−α is the factor usage.
6We implement the Olley and Pakes (1996) method to estimate the firm level Solow residual and contrast it with

our measure of labor productivity. We find that the two methods yield similar and highly correlated estimates for the

productivity growth in the US, the average correlation coefficient is 0.95.
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and calculate firm level shocks as the demeaned labor productivity growth rates, where the mean is

computed over all firms of the year (the case when we use only year dummies), or of the year and

industry (when both year and industry dummies are used in the regressions).7

Using both estimations for the idiosyncratic shocks, we construct two versions of the “granular

residual”:

Γt,v1 =

K=100∑
i=1

S i,t−1

Yt−1
ε̂it; Γt,v2 =

K=100∑
i=1

S i,t−1

Yt−1
ε̂i jt. (3.8)

Since we are interested in the effect of the largest firm we only work with the largest top

K = 100 firms ranked by their sales to output ratio in the previous period.8

3.2.2 Econometric Specification

To test for the effect of firm level idiosyncratic shocks on aggregate fluctuations we regress our

measure of idiosyncratic shocks, Γ, on growth of GDP per capita using the following specification:

gYt = α +

2∑
i=0

μiΓt−i + ut. (3.9)

The adjusted R-squared from regressing GDP growth gYt on Γt and its different lags allows

one to assess the extent to which idiosyncratic shocks explain the variability of GDP growth. If

we recall equation (3.3), the coefficient on the granular residual will provide an estimation of the

factor usage in these different countries.9

7The challenge with correctly identifying εit remains apparent. It is hard to identify εit in the data because aggre-

gate shocks could cause firm i’s volatility or reflect it. We do not directly address the reflection problem but perform

robustness checks to also control for the common factors so to prove the explanatory power of the granular residual is

not coming from aggregate shocks (e.g. oil, monetary, fiscal policy shocks and etc). The reflection problem is studied

in (Manski, 2007). It is similar to “the problem of interpreting the almost simultaneous movements of a person and his

reflection in a mirror.” Manski points out unless one knows about optics and human behavior, he would not be able to

tell whether the mirror image cause the person’s movements or reflect them. We attempted to apply the few solution

methods that have been proposed in the literature but to no avail. The reason is these solutions all involve exogenous

variation that is hard to find in our context.
8To verify the empirical methodology we simulated a simple economy, with exogenous production and without

linkages. With the true idiosyncratic shocks, we constructed the granular residual and regressed output on this measure.

The empirical strategy tends to bias the granular residual downwards in its magnitude and volatility, decreasing its

explanatory power. Further, it seems to capture well the idiosyncratic components of a firm’s productivity growth in a

granular world without inducing any spurious bias. Interestingly, the results also show that the explanatory power of the

model decreases when the idiosyncratic shocks to large firms are less volatile.
9Gabaix (2011) takes μ = 2.6 as the benchmark to compare the regression coefficient with for the US.
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Table 3.1 provides a summary of country characteristics in terms of the variables used in the

regression model. The average and the volatility of per capita GDP growth across the countries

are very similar (columns 1 and 2), but firm level productivity growth is much more volatile in

non-US countries (column 4). Column 5 shows the correlation between growth rates across firms

is small for all of the countries, suggesting the measure we use for firm level shock does capture

idiosyncratic variation to the firms. Finally, the average and standard deviation of the granular

residual are smaller for version 2 than for 1 (columns 6 and 7 for version 1 and 8 and 9 for version

2). This shows when we demean by year-industry, we further get rid of industry-specific shocks

that could confound our results.

Table 3.1: Country Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9)

μgY σgY μg σg ρgi,g j μΓv1
σΓv1

μΓv2
σΓv2

US 0.020 0.019 0.017 0.110 0.023 0.0003 0.0037 0.0003 0.0032

Canada 0.017 0.021 0.017 0.208 0.016 0.0006 0.0055 -0.0001 0.0044

Germany 0.019 0.019 0.015 0.179 0.020 0.0034 0.0092 -0.0001 0.0072

UK 0.019 0.022 0.011 0.258 0.010 0.0031 0.0144 -0.0016 0.0081

μgY is the average annual per capita GDP growth; σgY is the standard deviation of annual per capita GDP

growth; μg is the average annual firm-level productivity growth; σg is the standard deviation of annual firm-level

productivity growth; ρgi ,g j is the average annual sample correlation of firm evel productivity growth; μΓ is

l the average annual granular residual with year-demeaning; σΓ is the standard deviation of the annual granular

residual; μΓsic2 is the standard deviation of the annual granular residual with industry demeaning;

σΓsic2 is the standard deviation of annual granular residual with industry demeaning.

3.2.3 Data

Firm level data for the US and Canada, UK and Germany are from Compustat North America,

Computstat Global, respectively. The length of coverage varies and it spans from 1950 to present

and from 1987 to present for NA and international companies. We keep only firms incorporated

and headquartered in their home country so to exclude foreign firms to the best of our ability. The

oil industry is excluded due to difficulty in teasing out real firm level shocks from the aggregate
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commodity price shocks.10 Figure 3.4 summarizes the number of firms, with valid data required

by our regression specification, by country and year for each country.

The advantage of using Compustat is the comparability of information reported across coun-

tries, but the coverage on the number of firms is limited in Germany and Canada for some of the

years. Further, since the analysis is done over the top 100 firms in the economy we lose additional

observations because for some years there are less than 100 firms. However, since sales of the top

50 and 100 firms as a percentage of GDP track each other closely for Germany and Canada, we

restrict our samples to years with at least 50 rather than 100 firms. This means for years less than

100 (but more than 50) firms we use all firms in our empirical exercises.

Macroeconomic data (GDP, GDP per capita and GDP deflators) are taken from the World

Bank’s Development Indicators database. GDP deflators are used to convert sales into real terms.11

Some of the sales figures in Compustat are denominated in non-local currencies, and we look to

the respective country’s central bank website to obtain the exchange rates.12

3.3 Estimation Results

In this section, we present the estimation results for the US and Canada, UK and Germany as

specified in regression (3.9) for different lags for the granular residual.

3.3.1 Impact of Idiosyncratic Firm Level Shocks

Table 3.2 presents the regression results for the US, Germany, the UK and Canada. Taking the US

as the benchmark, we see in columns (1) & (2) of Panel A that the granular residual explains 24%

(35%) of the fluctuations in GDP growth using 1 (2) lag(s) when demeaning by year. When we

control for the contemporaneous granular residual and its two lags, their coefficients are significant

and hovering around 2.6—the theoretical value of μ Gabaix (2011) uses for comparison. The

10We also exclude financial firms as in Gabaix (2011), “because the nature of their sales are not in line with the

meaning of ‘gross output’ in the paper.”
11Ideally one would like to use industry production indexes but they are not readily available so we use GDP deflators

instead.
12This could introduce potential measurement errors since the exchange rates were matched to the fiscal years, rather

than the period covered by a firm’s financial statements.
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presence of granular effects is confirmed in these results.

When we control for industry-year specific shocks by demeaning at the 2-digit industry level,

we observe an increase in the granular effects for the US in Panel B columns (1) & (2) of the

same table. The resulting firm idiosyncratic shocks are closer to the true εit when industry specific

shocks are controlled for, hence if the granular hypothesis holds we should expect to explain more

of GDP fluctuations.13

The results for the other countries are mixed. For Germany, we find the GR to explain GDP

fluctuations even better than for the US (35% (36%) when demeaning by year, and 24% (34%)

when demeaning by year-industry). However, regardless of demeaning the GR by year or indus-

try, we do not find granular effects in Canada or the UK. The adjusted R2 is essentially zero and

the coefficients are insignificant and often negative. Even though all countries meet the sufficient

conditions, we find idiosyncratic shocks translate to aggregate fluctuations only in the US and

Germany.

The natural progression at this point is to implement factor methods to examine whether any

residual common shocks give rise to our findings, and to use principal component analysis to

investigate which firms explain the aggregate fluctuations the most. However, since the identities

of the largest firms change from year to year, we cannot use conventional methods to examine

whether our findings are driven by common factors or specific firms. Thus in the next section

we deconstruct our findings utilizing still the granular residual measure demeaned at the industry

level, since this level of demeaning yields the most robust proxy for idiosyncratic shock as shown

in Table 3.1.

13We also experimented with demeaning at the 3-digit and 4-digit level but the granular effects are weakened as a

result. Increasing the level of disaggregation should improve the explanatory power further theoretically but at the same

time inducing attenuation bias empirically because the mean would then be estimated with fewer firms. These two

forces work against each other and complicate the interpretations of the regression results, hence we focus on year and

year-industry at the 2-digit level demeaning in this paper as mentioned in the Introduction.
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Table 3.2: Explanatory Power of the Granular Residual

Panel A: GR with Year Demeaning

(1) (2) (3) (4) (5) (6) (7) (8)

USA Germany UK Canada

Γt 1.83∗∗ 2.51∗∗∗ 1.19∗∗ 0.93∗∗ 0.08 -0.00 -0.22 -0.37

(0.69) (0.69) (0.42) (0.44) (0.32) (0.35) (0.58) (0.60)

Γt−1 2.58∗∗∗ 2.88∗∗∗ 1.00∗∗ 1.15∗∗ 0.31 0.35 0.38 0.55

(0.71) (0.67) (0.43) (0.43) (0.32) (0.34) (0.58) (0.59)

Γt−2 2.13∗∗∗ -0.23 -0.14 0.02

(0.71) (0.44) (0.34) (0.59)

Intercept 0.02∗∗∗ 0.02∗∗∗ 0.01 0.01 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00)

N 56 55 21 20 22 21 48 47

R2 0.27 0.38 0.42 0.46 0.05 0.07 0.01 0.03

adj. R2 0.24 0.35 0.35 0.36 -0.05 -0.09 -0.03 -0.04

Panel B: GR with 2-digit Industry Demeaning

(1) (2) (3) (4) (5) (6) (7) (8)

USA Germany UK Canada

Γt 2.79∗∗∗ 3.70∗∗∗ -0.04 0.00 0.21 0.00 -0.29 -0.57

(0.76) (0.78) (0.61) (0.55) (0.61) (0.68) (0.70) (0.72)

Γt−1 3.34∗∗∗ 3.92∗∗∗ 1.60∗∗ 1.95∗∗∗ 0.71 0.71 0.73 0.78

(0.74) (0.71) (0.60) (0.58) (0.59) (0.64) (0.70) (0.70)

Γt−2 2.07∗∗∗ 0.48 -0.24 0.32

(0.75) (0.55) (0.61) (0.70)

Intercept 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00)

N 56 55 21 20 22 21 48 47

R2 0.37 0.48 0.31 0.44 0.07 0.10 0.03 0.05

adj. R2 0.35 0.45 0.24 0.34 -0.03 -0.06 -0.02 -0.02

* for p < .1, ** for p < .05, and *** for p < .01. Standard errors in parenthesis.

Depvar: Per capita GDP growth is regressed on the granular residuals calculated over the top 100 firms.



www.manaraa.com

88

3.4 Deconstructing the Empirical Results

We first examine the relative importance of top ranking firms amongst themselves in explaining

GDP fluctuations. Since the ranking of these top firms changes every year, we drop observations

that have the same ranking to construct the new GR. The results are presented in Figure 3.2 where

we drop a top ranked “composite firm” one at a time and plot the percentage reduction in adjusted-

R2s against its average weights over the sample period. The figure shows lower ranks bunched

together around zero in all four countries, suggesting their relative importance is small. However,

the impact of the largest firms is prominent in all countries with the starkest contrast in the case of

the US.
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Figure 3.2: Reduction in Adjusted-R2 after Dropping Top Ranked Firms

In light of this finding, we construct the granular residual with just the top 10 ranks to find

that the positive findings in the US and Germany can be explained just as well (see Table 3.3).

Table 3.4 additionally shows dropping top 10 ranks reduces the explanatory power significantly

and the coefficients are no long significant. In the UK and Canada, however, firms of the same

ranks did not play a significant role and dropping them leaves the adjusted R2 as low as before and
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the coefficients remain insignificant.14 Since summing up the granular residuals for the top ranks

dilute their explanatory power in the UK and Canada, we suspect the diversification mechanism

may be at work still in these two countries.

Table 3.3: Explanatory Power of the Granular Residual with the Top 10 Ranks

(1) (2) (3) (4) (5) (6) (7) (8)

USA Germany UK Canada

Γt 2.71∗∗∗ 3.30∗∗∗ -0.01 0.01 0.24 0.17 -0.46 -0.65

(0.74) (0.74) (0.67) (0.62) (0.90) (0.91) (0.69) (0.71)

Γt−1 3.03∗∗∗ 3.34∗∗∗ 1.77∗∗ 2.03∗∗∗ 0.99 1.14 0.40 0.39

(0.72) (0.70) (0.66) (0.64) (0.88) (0.92) (0.69) (0.70)

Γt−2 1.77∗∗ 0.30 -0.92 0.44

(0.73) (0.62) (0.88) (0.70)

Intercept 0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.01∗∗ 0.02∗∗∗ 0.02∗∗ 0.02∗∗∗ 0.02∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

N 56 55 21 20 22 21 48 47

R2 0.36 0.44 0.30 0.40 0.06 0.14 0.02 0.04

adj. R2 0.34 0.41 0.22 0.29 -0.03 -0.01 -0.03 -0.03

* p < .1, ** p < .05, and *** p < .01. Per capita GDP growth is regressed on the granular

residuals calculated over the top 10 ranks.

To further examine where the differences in the contribution of top firms with comparable

importance could be coming from, we construct the rank specific weighted idiosyncratic shock

and plot its correlation with GDP growth in Figure 3.3.15 The right column of the figure shows

unambiguously that the top ranks in Germany and the US are also positively correlated with GDP

growth, but the picture is much more nuanced for Canada and the UK. We conclude that the higher

tendency of high ranking firms moving in opposite directions in the UK and Canada neutralizes the

effect of idiosyncratic shocks, thus it is not surprising the final measure of granular residual–the

sum–do not explain aggregate fluctuations for these two countries.

The last piece of the puzzle remains as to why shocks diversify away in the case of the UK

and Canada but not in the US or Germany. The reason may be that top ranked firms in these two

14This conclusion is robust to dropping the top 15 ranks.
15We compute the correlation between GDP growth and the contemporaneous rank-specific GR, with its one lag and

then two lags. In the end we plot the average of the three correlations against the rank’s average sales to GDP ratio.
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Table 3.4: Explanatory Power of the Granular Residual without the Top 10 Ranks

(1) (2) (3) (4) (5) (6) (7) (8)

USA Germany UK Canada

Γt -1.92 -1.90 -4.34 -3.76 0.23 -0.11 0.50 0.25

(2.50) (2.53) (3.10) (3.09) (1.13) (1.58) (1.33) (1.34)

Γt−1 -0.12 -0.33 2.39 3.58 0.81 0.94 0.97 1.37

(2.49) (2.56) (3.12) (3.54) (1.13) (1.52) (1.32) (1.34)

Γt−2 -2.07 1.03 0.43 -0.85

(2.54) (3.09) (1.26) (1.33)

Intercept 0.02∗∗∗ 0.02∗∗∗ 0.01 0.01 0.01∗∗∗ 0.02∗∗ 0.02∗∗∗ 0.02∗∗∗
(0.00) (0.00) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00)

N 56 55 21 20 22 21 48 47

R2 0.01 0.02 0.21 0.25 0.03 0.04 0.02 0.03

adj. R2 -0.03 -0.03 0.13 0.11 -0.07 -0.13 -0.03 -0.04

* for p < .1, ** for p < .05, and *** for p < .01. Per capita GDP growth is regressed on the

granular residuals calculated over the top 11-100 firms.
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Figure 3.3: Correlation between Firm Specific GR and GDP Growth
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Table 3.5: Top 10 Sectors in 2002

Canada Germany
Rank SIC2 # Top Firms S

Y SIC2 # Top Firms S
Y

1 Elec. 5 6.47 Trans.Eq. 8 16.12

2 Food Strs. 5 5.34 Conglmrts. 3 7.52

3 Comm. 8 4.19 Chem. 14 6.82

4 Trans.Eq. 4 3.64 Comm. 5 3.59

5 Metal Ind. 7 2.57 G.Mechdis.Strs 2 2.59

6 G.Mechdis.Strs. 2 1.28 Metal Ind. 5 2.23

7 Chem. 5 1.16 Trans.Svcs 2 1.83

8 Paper and Allied 5 0.98 Machne.Eq. 14 1.60

9 Lumber 7 0.89 Motr.Warehsing. 1 1.59

10 Railroad Trans. 2 0.84 Whsl Tr. 4 1.30

UK US
Rank SIC2 # Top Firms S

Y SIC2 # Top Firms S
Y

1 Food Prd. 8 6.41 Trans.Eq. 8 5.09

2 Chem. 7 6.33 G.Mechdis.Strs 8 4.27

3 Comm. 7 5.88 Comm. 11 3.48

4 Food Strs. 5 3.76 Chem. 10 2.64

5 G.Mechdis.Strs 4 3.53 Food Strs. 6 1.71

6 MetalMining 2 3.10 Conglmrts. 2 1.63

7 Trans.Eq. 4 2.18 Food Prd. 7 1.60

8 Biz.Svcs. 6 1.74 Machne.Eq. 6 1.52

9 Whsl Tr. 3 1.51 Biz.Svcs. 4 1.52

10 Prntn.Pub. 4 1.44 Whsl Tr. 4 1.34

Top 10 sectors as ranked by sector sales of top 100 firms (in the overall economy) in 2001.

countries are spread out across more sectors or they are from sectors not as interconnected with the

rest of the economy. With our data and methodology we are only able to investigate first possibility

here. To do this, we show in Table 3.5 the distributions of top firms by sectors in 2002 and find

that they are similar across countries. Thus the positive results in the US and Germany are not

purely driven by the fact that top ranking firms are from sectors that are also of disproportionate

importance in the economy.
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3.5 Conclusion

This paper quantifies the importance of firm level idiosyncratic shocks in explaining aggregate

fluctuations. It is motivated by the theoretical framework (Gabaix, 2011) that shows in an economy

with fat-tailed size distribution of firms, law of large numbers breaks down and idiosyncratic shocks

to firms diversify at a much milder rate and lead to nontrivial effects on aggregate fluctuations. In

the data, firm level shocks are estimated as the demeaned productivity growth rates, where the

mean is calculated over top firms of the year or of the year and industry. These shocks are then

weighted by firms’ sales to GDP ratio, and the empirical strategy tests whether the sum of these

weighted shocks statistically explains GDP fluctuations.

We find shocks to large firms are of little relevance in the UK or Canada but explain roughly 1/3

of the output fluctuations in the US and Germany. While top ranking firms contribute the most to

granular effects, they do not always sum up to play a significant role in every country. We conclude

that the reason they did not explain GDP growth in the UK and Canada is because diversification is

at work still in these two countries. Our results suggest while firm size distribution is found to be

highly skewed in most economies, the ability of the largest firms to transmit shocks is not universal.

Future studies on the micro-foundation of aggregate fluctuations should take into account that apart

from the granular theory, other transmission mechanisms may be at work, and the importance of

which may differ on a country-by-country basis.
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3.6 Appendix: Additional Figures
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Figure 3.4: Number of Firms with Valid Sales and Employee Data



www.manaraa.com

Bibliography

Acemoglu, D., Carvalho, V., Ozdaglar, A., and Tahbaz Salehi, A. (2012). The network origins of

aggregate fluctuations. Econometrica, 80(5):1977–2016.

Ackerberg, D., Caves, K., and Frazer, G. (2006). Structural identification of production functions.

MPRA Paper 38349, University Library of Munich, Germany.

Ackerberg, D. A., Caves, K., and Frazer, G. (2015). Identification properties of recent production

function estimators. Econometrica, 83(6):2411–2451.

Aghion, P. and Tirole, J. (1994). The management of innovation. The Quarterly Journal of Eco-
nomics, 109(4):1185–1209.

Agrawal, A., Rosell, C., and Simcoe, T. (2014). How do tax credits affect R&D expenditures by

small firms? evidence from canada. Working Papers.

Aguirregabiria, V. (1999). The dynamics of markups and inventories in retailing firms. The Review
of Economic Studies, 66(2):275–308.

Amoroso, S. (2014). The hidden costs of R&D collaboration. JRC-IPTS Working Papers on

Corporate R&D and Innovation 2014-02, Institute of Prospective Technological Studies, Joint

Research Centre.

Athey, S. and Bagwell, K. (2008). Collusion with persistent cost shocks. Econometrica, 76(3):493–

540.

Audretsch, D. B., Menkveld, A. J., and Thurik, A. R. (1996). The decision between internal and

external R&D. Journal of Institutional and Theoretical Economics (JITE), 152(3):pp. 519–530.

Aw, B. Y., Roberts, M. J., and Winston, T. (2007). Export market participation, investments in R&D

and worker training, and the evolution of firm productivity. The World Economy, 30(1):83–104.

Aw, B. Y., Roberts, M. J., and Xu, D. Y. (2011). R&D investment, exporting, and productivity

dynamics. American Economic Review, 101(4):1312–44.

Barro, R. J. (1972). A theory of monopolistic price adjustment. The Review of Economic Studies,

39(1):17–26.

Beneito, P. (2006). The innovative performance of in-house and contracted R&D in terms of patents

and utility models. Research Policy, 35(4):502–517.

Bergman, K. (2011). Internal and external R&D and productivity - evidence from swedish firm-

level data. Working Papers 2011:27, Lund University, Department of Economics.



www.manaraa.com

95

Berle, A. and Means, G. (1932). The Modern Corporation and Private Property. The Macmillan

Company.

Bøler, E. A., Moxnes, A., and Ulltveit-Moe, K. H. (2015). R&d, international sourcing, and the

joint impact on firm performance. American Economic Review, 105(12):3704–39.

Bonte, W. (2003). R&d and productivity: Internal vs. external r&d - evidence from west german

manufacturing industries. Economics of Innovation and New Technology, 12(4):343–360.

Carlton, D. W. (1985). Chapter 15 The theory and the facts of how markets clear: Is industrial
organization valuable for understanding macroeconomics?, volume Volume 1 of Handbook of
Industrial Organization, pages 909–946. Elsevier.

Carlton, D. W. (1986). The rigidity of prices. The American Economic Review, 76(4):637–658.

Carvalho, V. M. (2008). Aggregate Fluctuations and the Network Structure of Intersectoral Trade.

Universitat Pompeu Fabra, Economics Working Papers.

Cassiman, B. and Veugelers, R. (2006). In Search of Complementarity in Innovation Strategy:

Internal R& D and External Knowledge Acquisition. Management Science, 52(1):68–82.

Cohen, W. M. (2010). Chapter 4 - fifty years of empirical studies of innovative activity and perfor-

mance. In Hall, B. H. and Rosenberg, N., editors, Handbook of The Economics of Innovation,
Vol. 1, volume 1 of Handbook of the Economics of Innovation, pages 129 – 213. North-Holland.

Cohen, W. M. and Levinthal, D. A. (1989). Innovation and learning: The two faces of r&d.

Economic Journal, 99(397):569–96.

De Loecker, J. and Warzynski, F. (2012). Markups and firm-level export status. American Eco-
nomic Review, 102(6):2437–71.

di Giovanni, J. and Levchenko, A. A. (2013). Firm entry, trade, and welfare in Zipf’s world.

Journal of International Economics, 89(2):283–296.

di Giovanni, J., Levchenko, A. A., and Méjean, I. (2014). Firms, destinations, and aggregate

fluctuations. Econometrica, 82(4):1303–1340.

Domar, E. D. (1961). On the Measurement of Technological Change. The Economic Journal,
71(284):709.

Doraszelski, U. and Jaumandreu, J. (2013). Rd and productivity: Estimating endogenous produc-

tivity. The Review of Economic Studies.

Doraszelski, U. and Jaumandreu, J. (2015). Measuring the bias of technological change. CEPR

Discussion Papers 10275, C.E.P.R. Discussion Papers.

Dupor, B. (1999). Aggregation and irrelevance in multi-sector models. Journal of Monetary Eco-
nomics, 43(2):391–409.

Eichenbaum, M., Jaimovich, N., and Rebelo, S. (2011). Reference prices, costs, and nominal

rigidities. The American Economic Review, 101(1):234–262.



www.manaraa.com

96

Ellison, G. (2006). Bounded rationality in industrial organization. mimeo.

Foerster, A. T., Sarte, P.-D. G., and Watson, M. W. (2011). Sectoral versus aggregate shocks : A

structural factor analysis of industrial production. Journal of Political Economy, 119(1):1–38.

Gabaix, X. (2011). The Granular Origins of Aggregate Fluctuations. Econometrica, 79(3):733–

772.

Goldberg, P. K. and Hellerstein, R. (2011). How rigid are producer prices? Technical report,

Federal Reserve Bank of New York. Staff Reports.

Hall, R. L. and Hitch, C. J. (1939). Price theory and business behaviour. Oxford Economic Papers,

(2):12–45.

Himmelberg, C. P. and Petersen, B. C. (1994). R&D and Internal Finance: A Panel Study of Small

Firms in High-Tech Industries. The Review of Economics and Statistics, 76(1):38–51.

Horvath, M. (1998). Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent

Sectoral Shocks. NBER Chapters, 1(4):781–808.

Horvath, M. (2000). Sectoral shocks and aggregate fluctuations. Journal of Monetary Economics,

45(1):69–106.

Hottenrott, H. and Peters, B. (2012). Innovative capability and financing constraints for innovation:

More money, more innovation? The Review of Economics and Statistics, 94(4):1126–1142.

Hou, J. and Mohnen, P. (2013). Complementarity between internal knowledge creation and external

knowledge sourcing in developing countries. UNU-MERIT Working Paper Series 010, United

Nations University, Maastricht Economic and social Research and training centre on Innovation

and Technology.

Hulten, C. R. (1978). Growth accounting with intermediate inputs. The Review of Economic
Studies, 45(3):511–518.

Kashyap, A. K. (1995). Sticky prices: New evidence from retail catalogs. The Quarterly Journal
of Economics, 110(1):245–274.

Katayama, H., Lu, S., and Tybout, J. R. (2009). Firm-level productivity studies: Illusions and a

solution. International Journal of Industrial Organization, 27(3):403–413.

Klenow, P. J. and Malin, B. A. (2010). Chapter 6 - Microeconomic Evidence on Price-Setting,

volume Volume 3 of Handbook of Monetary Economics, pages 231–284. Elsevier.

Klette, T. J. and Griliches, Z. (1996). The inconsistency of common scale estimators when output

prices are unobserved and endogenous. Journal of Applied Econometrics, 11(4):343–361.

Lach, S. and Tsiddon, D. (1992). The behavior of prices and inflation: An empirical analysis of

disaggregated price data. Journal of Political Economy, 100(2):349–89.

Levinsohn, J. and Petrin, A. (2003a). Estimating production functions using inputs to control for

unobservables. Review of Economic Studies, 70(2):317–341.



www.manaraa.com

97

Levinsohn, J. and Petrin, A. (2003b). Estimating production functions using inputs to control for

unobservables. The Review of Economic Studies, 70(2):317–341.

Loecker, J. D. (2011). Product differentiation, multiproduct firms, and estimating the impact of

trade liberalization on productivity. Econometrica, 79(5):1407–1451.

Lokshin, B., Belderbos, R., and Carree, M. (2008). The productivity effects of internal and external

r&d: Evidence from a dynamic panel data model. Oxford Bulletin of Economics and Statistics,

70(3):399–413.

Long, Jr, J. B. and Plosser, C. I. (1983). Real business cycles. Journal of Political Economy, pages

39–69.

Manski, C. F. (2007). Identification of endogenous social effects: The reflection problem. The
Review of Economic Studies, 60(3):531–542.

Midrigan, V. (2011). Menu costs, multiproduct firms, and aggregate fluctuations. Econometrica,

79(4):1139–1180.

Olley, G. S. and Pakes, A. (1996). The dynamics of productivity in the telecommunications equip-

ment industry. Econometrica, 64(6):1263–97.

Pakes, A. (2003). A Reconsideration of Hedonic Price Indexes with an Application to PC’s. Amer-
ican Economic Review, 93(5):1578–1596.

Peters, B., Roberts, M. J., Vuong, V. A., and Fryges, H. (2013). Estimating dynamic r&d demand:

An analysis of costs and long-run benefits. Working Paper 19374, National Bureau of Economic

Research.

Rotemberg, J. J. (1982). Monopolistic price adjustment and aggregate output. The Review of
Economic Studies, 49(4):517–531.

Rust, J. (1987). Optimal replacement of gmc bus engines: An empirical model of harold zurcher.

Econometrica, 55(5):pp. 999–1033.

Schmiedeberg, C. (2008). Complementarities of innovation activities: An empirical analysis of the

German manufacturing sector. Research Policy, 37(9):1492–1503.

Sheshinski, E. and Weiss, Y. (1977). Inflation and costs of price adjustment. The Review of Eco-
nomic Studies, 44(2):287–303.

Sheshinski, E. and Weiss, Y. (1992). Staggered and synchronized price policies under inflation:

The multiproduct monopoly case. The Review of Economic Studies, 59(2):331–359.

Slade, M. E. (1991). Market structure, marketing method, and price instability. The Quarterly
Journal of Economics, 106(4):1309–1340.

Slade, M. E. (1998). Optimal pricing with costly adjustment: Evidence from retail-grocery prices.

The Review of Economic Studies, 65(1):87–107.



www.manaraa.com

98

Stiglitz, J. E. and Weiss, A. (1981). Credit rationing in markets with imperfect information. Amer-
ican Economic Review, 71(3):393–410.

Tirole, J. (1989). The Theory of Industrial Organization. MIT Press.

Álvarez, L. J., Dhyne, E., Hoeberichts, M., Kwapil, C., Bihan, H. L., Lünnemann, P., Martins, F.,

Sabbatini, R., Stahl, H., Vermeulen, P., and Vilmunen, J. (2006). Sticky prices in the euro area:

A summary of new micro-evidence. Journal of the European Economic Association, 4(2):575–

584.



www.manaraa.com

Curriculum Vitae

Education

Ph.D., Economics, Boston University, Boston MA, May 2016 (expected)

Dissertation Title: Innovation and Productivity Growth with Heterogeneous Firms
Dissertation Committee: Stefania Garetto, Jordi Jaumandreu and Marc Rysman

M.A., Political Economy, Boston University, Boston MA, May 2012

B.S.Comm. (Honours), Economics and Finance with a minor in Mathematics,

DePaul University, Chicago IL, May 2009

Honors Thesis Title: The Transferability of China’s Development Strategy: Case Studies
of Special Economic Zones in Africa

Fields of Interest

International Industrial Organization, Applied Econometrics, Economic Development

Working Papers

"The Dynamics of R&D Organization and Productivity Growth" (Job Market Paper).

"Innovation and Prices"

(with Jordi Jaumandreu), July 2015.

"Do Firm-Level Shocks Generate Aggregate Fluctuations?"

(with Maria Francisca Perez), July 2014.

Work in Progress

"Trade and Skill Upgrading in the Chinese Manufacturing Sector"

"Import Competition and Heterogeneous Innovation"

"The Anatomy of China’s Exports to Africa"

Conference and Seminar Presentations

6th Annual ZEW/MaCCI Conference, Mannheim, Germany, June 2015

13th Annual International Industrial Organization Conference, Boston, April 2015

MaCCI Annual Conference, Mannheim, Germany, March 2015

NBER Productivity Lunch Seminar, Boston, September 2014

12th Annual International Industrial Organization Conference, Chicago, April 2014



www.manaraa.com

100

Teaching Experience

Lecturer, Modeling Business Decisions, School of Management, Boston University, Spring

2015, Fall 2015, Spring 2016

Teaching Fellow, Statistics I, Mathematics Department, Boston University, Fall 2014

Co-Head Teaching Fellow, Introductory Macroeconomic Analysis, Economics Department,

Boston University, Spring 2014

Teaching Fellow, Introductory Microeconomic Analysis, Economics Department, Boston Uni-

versity, Fall 2013

Instructor, Introductory Macroeconomic Analysis, Economics Department, Boston University,

Summer 2012

Teaching Fellow, Introductory Macroeconomic Analysis, Economics Department, Boston Uni-

versity, Fall 2011

Work Experience

Research Assistant for Claudia Olivetti, Boston University, Spring 2012 - Spring 2013

Economic Development Research Intern, Lincoln Park Chamber of Commerce, Chicago IL,

2009

Corporate Relations Intern, The Chicago Council on Global Affairs, Chicago IL, 2009

McCormick Tribune Intern, South-East Asia Center, Chicago IL, 2008-2009

Legal Consulting Intern, Huron Consulting Group, Chicago IL, 2008

Fellowships and Awards

IED Travel Grant, Boston University, 2014

Funding for a Research Assistant, MA-RA Mentor Program, Boston University, Department

of Economics, Summer 2013, Spring 2014

Teaching Fellowship, Boston University, 2011, 2013

56th Presidential Inauguration Conference Scholar, 2009

DePaul University Centennial Scholarship, 2005 - 2009

Computer Skills: Stata, Matlab, Gauss, LATEXand MS Office

Citizenship: China/F1


